Рассмотрим более подробно характеристику глинистых грунтов:

  • В их состав входят мельчайшие глинистые частицы (размером менее 0,01 мм, имеющие форму пластинок или чешуек) и частицы песка.
  • Обладают большой пористостью, в связи с этим имеют способность свободно поглощать и удерживать воду. Даже при частичном высыхании удерживают в себе влагу.
  • При замерзании жидкость превращается в лед, при этом увеличивая общий объем грунта. Все породы, которые содержат в себе частицы глины, подвержены этому негативному влиянию, и чем больше ее в составе, тем сильнее проявляется данное свойство.
  • Благодаря консистенции глинистых грунтов, порода обладает связывающими свойствами, которые выражаются в способности сохранять свою форму.
  • В соответствии с содержанием частиц глины, существует классификация глинистых грунтов: глина, суглинки и супеси.
  • Способность деформирования породы без разрывов под воздействием внешних нагрузок, и сохранение формы после ее прекращения, называют пластичностью глинистых грунтов. Степень пластичности определяет строительные свойства глинистых пород: влажность, плотность, сопротивлению сжатию. При увеличении влажности происходит уменьшение плотности и сопротивление сжатию.

Гранулометрический состав и пластичность

Классификация глинистых грунтов более детально:


  • Содержание в супеси глинистых частиц около 10 %, остальной объем занимают песчаные частицы.
  • По своим характеристикам почти не отличается от песка. Бывает двух видов: легкая (в составе до 6% глиняных частиц) и тяжелая (до 10%).
  • Растирая супесь во влажных ладонях, отчетливо заметны частицы песка.
  • Комки в сухом состоянии имеют рассыпчатую структуру и легко крошатся при ударе.
  • Шар, сформированный из увлажненной супеси, при давлении легко рассыпается.
  • Отличается сравнительно низкой пористостью (0,5-0,7), по причине высокого содержания песка.
  • Несущая способность супеси имеет прямую зависимость от влажности глинистых грунтов.

В суглинке содержание глинистых частиц может достигать 30% от общего веса. Как и в супеси, суглинок содержит большую часть песка, поэтому его можно назвать песчано-глинистым грунтом.

  • В сравнении с супесью, отличается большей связанностью, при определенных условиях может сохранять форму, не распадаясь на мелкие куски.
  • Тяжелые суглинки содержат до 30% глинистых частиц, а легкие до 20%.
  • Сухие куски сглинка не так тверды, как глина, при ударении рассыпаются на небольшие куски.
  • При увлажнении суглинок мало пластичен.
  • При растирании, в ладонях четко заметны песчаные частицы.
  • Комки легко раздавливаются.
  • Шар, сформированный из увлажненного суглинка, при надавливании превращается в лепешку, с характерными трещинами по краям.
  • Пористость суглинка несколько выше, чем супеси (0,5­–1).

В глине содержится более 30% глинистых частиц. Среди грунтов, она имеет наибольшую связанность.

  • В сухом состоянии глина твердая, при увлажнении становиться пластичной, вязкой, прилипает к пальцам.
  • При растирании в ладонях песчаных частичек практические не ощущается, комки раздавить довольно затруднительно.
  • При разрезании ножом пласта сырой глины, на гладком срезе не видно песчинок.
  • Скатанный шарик из увлажненной глины при надавливании превращается в лепешку без трещин.
  • Обладает наибольшей пористостью (до 1,1).

Составы с различными примесями

Пылевато-глинистые грунты представляют собой состав, в котором содержится примесь органических веществ (0,05–0,1). По степени засоленности их разделяют:

  • засоленные – содержание солей в составе превышает 5%;
  • незасоленные;

Пылевато-глинистые грунты включают в свой состав специфические породы, которые проявляют неблагоприятные свойства при замачивании:

  • набухающие – грунты, которые при замачивании химическими растворами или водой способны увеличиваться в объеме.
  • просадочные – породы, которые под воздействием внешнего давления или собственного веса, а также при значительном увлажнении водой способны давать просадку.

Среди пылевато-глинистых пород следует отдельно выделить илы и лессы.

  • Лессовые породы имеют характерную макропористость, в их составе содержится карбонат кальция, а при замачивании большим количеством воды под нагрузкой дают просадку, легко размокают и размываются.
  • Илом называют осадок водоемов, который образовался в результате различных микробиологических процессов, имеющий влажность, граничащую с текучестью.

Все вышеперечисленные породы от супесей до глины, при создании определенных гидродинамических условий способны принимать плывунное состояние, превращаясь в густую, вязкую жидкость.

Посмотрите видео: Вывоз грунта

План статьи

Глина, суглинок, супесь – основные типы грунтов, с которыми приходится иметь дело индивидуальным застройщикам. В данной статье мы поговорим о строительстве фундамента на суглинке, о вариантах оснований и тонкостях их выбора. Естественно, в основном мы будем рассматривать те фундаменты, которые можно возвести своими руками, не прибегая к дорогостоящим услугам строителей.

Какой фундамент строить на суглинке

Суглинистая почва – смесь глины и песка, в которой превалирует глина. Процентное соотношение компонентов может быть разное, отсюда и различные свойства суглинка. Например, чем больше в нем песка, тем больше коэффициент пористости и меньше расчетное сопротивление грунта . В сухом состоянии суглинки обычно рассыпчатые – данное свойство обеспечивает песчаный наполнитель. А вот во влажном они становятся вязкими – заслуга глины. Из-за наличия значительной части последней, увлажненные суглинки при отрицательных температурах промерзают, увеличиваясь в объеме. Поэтому к фундаментам на пучинистых грунтах (глина, супесь, суглинки) предъявляются особые требования. Исходя из конкретных условий строительства, индивидуальные застройщики делают ставку на следующие типы фундаментов:

  • армированная плита. В этом случае речь идет, как правило, о плавающем фундаменте, заложенным выше ГПГ;
  • сваи. Заглубленные ниже ГПГ, они обеспечивают неплохую устойчивость постройки, однако их применение должно быть обосновано эксплуатационными и экономическими факторами;
  • ленточный фундамент. На пучинистых грунтах жесткая армированная лента возводится либо выше ГПГ (для легких построек и при условии дренирования и утепления фундамента), либо ниже – получается дом с подвалом

Перед выбором типа фундамента

Если вы не рассчитываете делиться деньгами со специалистами по геологоразведке, то анализировать грунт придется самостоятельно. Для этого на предполагаемой стройплощадке необходимо выкопать несколько шурфов (ям) на глубину ниже ГПГ (примерно на 30 см). Значение последней можно ориентировочно узнать по рисунку из этой статьи. Вместо шурфов удобно бурить скважины, для чего можно задействовать обычный садовый бур. Уже на этапе бурения (копки) оценивается характер грунта, равномерность его залегания, изменения его состава с увеличением глубины. Вполне вероятно, что ниже суглинка будет залегать слой глины, и придется строить фундамент на глине .

Стоит заметить, что подобные разведочные работы рекомендуется проводить весной, когда уровень грунтовых вод ближе всего к поверхности. Грунтовые воды могут доставить лишние хлопоты при устройстве фундамента, от них же зависит и выбор оптимального типа основания для дома. Уже на этапе геологической разведки будет понятно, находятся они ниже ГПГ (идеальный случай) или выше (придется прибегнуть к дополнительным работам, о которых пойдет речь ниже).

Плитный фундамент

Плита – один из самых надежных типов фундамента. Основное ее достоинство заключается в том, что она обладает максимальной площадью подошвы, а это значит, что даже на суглинке с R около 1 кг/см 2 можно рассчитывать на отсутствие проблем с устойчивостью и усадкой сооружения. Вместе с тем, плитный фундамент можно возводить даже при высоком УГВ и при внушительной ГПГ. Зимой при промерзании почвы фундамент вместе с домом будет подниматься, при потеплении – опускаться. Оттого его еще называют «плавающим» фундаментом.

Свайное основание

Свайные фундаменты возводят в тех случаях, когда на небольшой глубине обнаруживают грунт с лучшими, чем у суглинка характеристиками сопротивления на сжатие. Актуальна закладка таких опор для небольших домов, срубов, каркасных построек, бань и т.д., когда нагрузка будущего сооружения позволяет экономически обосновать применение свай. Имеется в виду требуемое их количество. По этому поводу рекомендуем ознакомиться с информацией, представленной в данной статье .

А может быть все-таки лента?

Часто дома на суглинке строят на ленточном основании. Можно строить мелкозаглубленный ленточный фундамент (очевидная экономия), либо заглубленную ниже ГПГ конструкцию. Последний вариант чаще всего выбирают при строительстве дома с подвалом. Он наиболее материалоемкий и оттого не самый дешевый. В целом, армированные бетонные ленты целесообразно строить в ситуациях, когда при геологоразведке выяснилось, что пласты грунта залегают равномерно по всей стройплощадке. В таких ситуациях можно рассчитывать на отсутствие серьезных неравномерных деформаций при его пучении.

Дополнительные работы

Основная проблема при строительстве дома на пучинистых грунтах (в том числе и на суглинках) заключается в том, чтобы возвести фундамент, адекватно воспринимающий увеличение объема грунта в холодную пору года. Причина, по которой все это происходит – увлажнение грунта. Поэтому при высоком уровне грунтовых и поверхностных вод необходимо устроить дренаж фундамента. Лучше всего задуматься над этим вопросом еще на этапе строительства фундамента – так затраты будут меньше, да и эффективность дренажной системы будет значительно выше.

Когда проблема увлажнения грунта решена, не лишним будет обеспечить дополнительную его теплоизоляцию по периметру дома. Это делается для того, чтобы уменьшить глубину промерзания почвы, тем самым сведя риск пучения грунта к нулю.

Таблица классификации грунтов по группам

От надежности функционирования системы «основание-фундамент-сооружение» зависит и срок эксплуатации здания, и уровень «качества жизни» его жильцов. Причем, надежность указанной системы базируется именно на характеристиках грунта, ведь любая конструкция должна опираться на надежное основание.

Именно поэтому, успех большинства начинаний строительных компаний зависит от грамотного выбора месторасположения строительной площадки. И такой выбор, в свою очередь, невозможен без понимания тех принципов, на которых основывается классификация грунтов.

С точки зрения строительных технологий существуют четыре основных класса, к которым принадлежат:

Скальные грунты, структура которых однородна и основана на жестких связях кристаллического типа;
- дисперсные грунты, состоящие из несвязанных между собой минеральных частиц;
- природные, мерзлые грунты, структура которых образовалась естественным путем, под действием низких температур;
- техногенные грунты, структура которых образовалась искусственным путем, в результате деятельности человека.


Впрочем, подобная классификация грунтов имеет несколько упрощенный характер и показывает только на степень однородности основания. Исходя из этого, любой скальный грунт представляет собой монолитное основание, состоящее из плотных пород. В свою очередь, любой нескальный грунт основан на смеси минеральных и органических частиц с водой и воздухом.

Разумеется, в строительном деле пользы от такой классификации немного. Поэтому, каждый тип основания разделяют на несколько классов, групп, типов и разновидностей. Подобная классификация грунтов по группам и разновидностям позволяет без труда сориентироваться в предполагаемых характеристиках будущего основания и дает возможность использовать эти знания в процессе строительства дома.

Например, принадлежность к той или иной группе в классификации грунтов определяется характером структурных связей, влияющих на прочностные характеристики основания. А конкретный тип грунта указывает на вещественный состав почвы. Причем, каждая классификационная разновидность указывает на конкретное соотношение компонентов вещественного состава.

Таким образом, глубокая классификация грунтов по группам и разновидностям дает вполне персонифицированное представление обо всех преимущества и недостатки будущей строительной площадки.

Например, в наиболее распространенном на территории европейской части России классе дисперсных грунтов имеется всего две группы, разделяющие эту классификацию на связанные и несвязанные почвы. Кроме того, в отдельную подгруппу дисперсного класса выделены особые, илистые грунты.

Такая классификация грунтов означает, что среди дисперсных грунтов имеются группы, как с ярко выраженными связями в структуре, так и с отсутствием таковых связей. К первой группе связанных дисперсных грунтов относятся глинистые, илистые и заторфованные виды почвы. Дальнейшая классификация дисперсных грунтов позволяет выделить группу с несвязной структурой – пески и крупнообломочные грунты.

В практическом плане подобная классификация грунтов по группам позволяет получить представление о физических характеристиках почвы «без оглядки» на конкретный вид грунта. У дисперсных связных грунтов практически совпадают такие характеристики, как естественная влажность (колеблется в пределах 20%), насыпная плотность (около 1,5 тонн на кубометр), коэффициент разрыхления (от 1,2 до 1,3), размер частиц (около 0,005 миллиметра) и даже число пластичности.

Аналогичные совпадения характерны и для дисперсных несвязных грунтов. То есть, имея представление о свойствах одного вида грунта, мы получаем сведения о характеристиках всех видов почвы из конкретной группы, что позволяет внедрять в процесс проектирования усредненные схемы, облегчающие прочностные расчеты.

Кроме того, помимо вышеприведенных схем, существует и особая классификация грунтов по трудности разработки. В основе этой классификации лежит уровень «сопротивляемости» грунта механическому воздействию со стороны землеройной техники.

Причем, классификация грунтов по трудности разработки зависит от конкретного вида техники и разделяет все типы грунтов на 7 основных групп, к которым принадлежат дисперсные, связанные и несвязанные грунты (группы 1-5) и скальные грунты (группы 6-7).

Песок, суглинок и глинистые грунты (принадлежат к 1-4 группе) разрабатывают обычными экскаваторами и бульдозерами. А вот остальные участники классификации требуют более решительного подхода, основанного на механическом рыхлении или взрывных работах. В итоге, можно сказать, что классификация грунтов по трудности разработки зависит от таких характеристик, как сцепление, разрыхляемость и плотность грунта.

ГЕНЕТИЧЕСКИЕ ТИПЫ ГРУНТОВ ЧЕТВЕРТИЧНОГО ВОЗРАСТА

Типы грунтов Обозначение
Аллювиальные (речные отложения) a
Озерные l
Озерно-аллювиальные
Делювиальные (отложения дождевых и талых вод на склонах и у подножия возвышенностей) d
Аллювиально-делювиальные ad
Эоловые (осаждения из воздуха): эоловые пески, лессовые грунты L
Гляциальные (ледниковые отложения) g
Флювиогляциальные (отложении ледниковых потоков) f
Озерно-ледниковые lg
Элювиальные (продукты выветривания горных пород, оставшиеся на месте образования) е
Элювиально-делювиальное ed
Пролювиальные (отложения бурных дождевых потоков в горных областях) p
Аллювиально-пролювиальные ap
Морские m

РАСЧЕТНЫЕ ФОРМУЛЫ ОСНОВНЫХ ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ГРУНТОВ

ПЛОТНОСТЬ ЧАСТИЦ ρ s ПЕСЧАНЫХ И ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ

КЛАССИФИКАЦИЯ СКАЛЬНЫХ ГРУНТОВ

Грунт Показатель
По пределу прочности на одноосное сжатие в водонасыщенном состоянии, МПа
Очень прочный R c > 120
Прочный 120 ≥ R c > 50
Средней прочности 50 ≥ R c > 15
Малопрочный 15 ≥ R c > 5
Пониженной прочности 5 ≥ R c > 3
Низкой прочности 3 ≥ R c ≥ 1
Весьма низкой прочности R c < 1
По коэффициенту размягчаемости в воде
Неразмягчаемый K saf ≥ 0,75
Размягчаемый K saf < 0,75
По степени растворимости в воде (осадочные сцементированные), г/л
Нерастворимый Растворимость менее 0,01
Труднорастворимый Растворимость 0,01—1
Среднерастворимый − || − 1—10
Легкорастворимый − || − более 10

КЛАССИФИКАЦИЯ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО ГРАНУЛОМЕТРИЧЕСКОМУ СОСТАВУ

ПОДРАЗДЕЛЕНИЕ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО СТЕПЕНИ ВЛАЖНОСТИ S r

ПОДРАЗДЕЛЕНИЕ ПЕСЧАНЫХ ГРУНТОВ ПО ПЛОТНОСТИ СЛОЖЕНИЯ

Песок Подразделение по плотности сложения
плотный средней плотности рыхлый
По коэффициенту пористости
Гравелистый, крупный и средней крупности e < 0,55 0,55 ≤ e ≤ 0,7 e > 0,7
Мелкий e < 0,6 0,6 ≤ e ≤ 0,75 e > 0,75
Пылеватый e < 0,6 0,6 ≤ e ≤ 0,8 e > 0,8
По удельному сопротивлению грунта, МПа, под наконечником (конусом) зонда при статическом зондировании
q c > 15 15 ≥ q c ≥ 5 q c < 5
Мелкий независимо от влажности q c > 12 12 ≥ q c ≥ 4 q c < 4
Пылеватый:
маловлажный и влажный
водонасыщенный

q c > 10
q c > 7

10 ≥ q c ≥ 3
7 ≥ q c ≥ 2

q c < 3
q c < 2
По условному динамическому сопротивлению грунта МПа, погружению зонда при динамическом зондировании
Крупный и средней крупности независимо от влажности q d > 12,5 12,5 ≥ q d ≥ 3,5 q d < 3,5
Мелкий:
маловлажный и влажный
водонасыщенный

q d > 11
q d > 8,5

11 ≥ q d ≥ 3
8,5 ≥ q d ≥ 2

q d < 3
q d < 2
Пылеватый маловлажный и влажный q d > 8,8 8,5 ≥ q d ≥ 2 q d < 2

ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ЧИСЛУ ПЛАСТИЧНОСТИ

ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ПОКАЗАТЕЛЮ ТЕКУЧЕСТИ

ПОДРАЗДЕЛЕНИЕ ИЛОВ ПО КОЭФФИЦИЕНТУ ПОРИСТОСТИ

ПОДРАЗДЕЛЕНИЕ САПРОПЕЛЕЙ ПО ОТНОСИТЕЛЬНОМУ СОДЕРЖАНИЮ ОРГАНИЧЕСКОГО ВЕЩЕСТВА

НОРМАТИВНЫЕ ЗНАЧЕНИЯ МОДУЛЕЙ ДЕФОРМАЦИИ Е ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ

Возраст и происхождение грунтов Грунт Показатель текучести Значения Е , МПа, при коэффициенте пористости е
0,35 0,45 0,55 0,65 0,75 0,85 0,95 1,05 1,2 1,4 1,6
Четвертичные отложения: иллювиальные, делювиальные, озерно-аллювиальные Супесь 0 ≤ I L ≤ 0,75 - 32 24 16 10 7 - - - - -
Суглинок 0 ≤ I L ≤ 0,25 - 34 27 22 17 14 11 - - - -
0,25 < I L ≤ 0,5 - 32 25 19 14 11 8 - - - -
0,5 < I L ≤ 0,75 - - - 17 12 8 6 5 - - -
Глина 0 ≤ I L ≤ 0,25 - - 28 24 21 18 15 12 - - -
0,25 < I L ≤ 0,5 - - - 21 18 15 12 9 - - -
0,5 < I L ≤ 0,75 - - - - 15 12 9 7 - - -
флювиогляциальные Супесь 0 ≤ I L ≤ 0,75 - 33 24 17 11 7 - - - - -
Суглинок 0 ≤ I L ≤ 0,25 - 40 33 27 21 - - - - - -
0,25<I L ≤0,5 - 35 28 22 17 14 - - - - -
0,5 < I L ≤ 0,75 - - - 17 13 10 7 - - - -
моренные Супесь и суглинок I L ≤ 0,5 75 55 45 - - - - - - - -
Юрские отложения оксфордского яруса Глина − 0,25 ≤ I L ≤ 0 - - - - - - 27 25 22 - -
0 < I L ≤ 0,25 - - - - - - 24 22 19 15 -
0,25 < I L ≤ 0,5 - - - - - - - - 16 12 10

Определение модуля деформации в полевых условиях

Модуль деформации определяют испытанием грунта статической нагрузкой, передаваемой на штамп. Испытания проводят в шурфах жестким круглым штампом площадью 5000 см 2 , а ниже уровня грунтовых вод и на больших глубинах — в скважинах штампом площадью 600 см 2 .


Зависимость осадки штампа s от давления р

1 — резиновая камера; 2 — скважина; 3 — шланг; 4 — баллон сжатого воздуха: 5 — измерительное устройство

Зависимость деформаций стенок скважины Δr от давления р

Для определения модуля деформации используют график зависимости осадки от давления, на котором выделяют линейный участок, проводят через него осредняющую прямую и вычисляют модуль деформации Е в соответствии с теорией линейно-деформируемой среды по формуле

E = (1 − ν 2)ωd Δp / Δs

Где v — коэффициент Пуассона (коэффициент поперечной деформации), равный 0,27 для крупнообломочных грунтов, 0,30 для песков и супесей, 0,35 для суглинков и 0,42 для глин; ω — безразмерный коэффициент, равный 0,79; d р — приращение давления на штамп; Δs — приращение осадки штампа, соответствующее Δр .

При испытании грунтов необходимо, чтобы толщина слоя однородного грунта под штампом была не менее двух диаметров штампа.

Модули деформации изотропных грунтов можно определять в скважинах с помощью прессиометра. В результате испытаний получают график зависимости приращения радиуса скважины от давления на ее стенки. Модуль деформации определяют на участке линейной зависимости деформации от давления между точкой р 1 , соответствующей обжатию неровностей стенок скважины, и точкой р 2 E = kr 0 Δp / Δr

Где k — коэффициент; r 0 — начальный радиус скважины; Δр — приращение давления; Δr — приращение радиуса, соответствующее Δр .


Коэффициент k определяется, как правило, путем сопоставления данных прессиометрии с результатами параллельно проводимых испытаний того же грунта штампом. Для сооружений II и III класса допускается принимать в зависимости от глубины испытания h следующие значения коэффициентов k в формуле: при h < 5 м k = 3; при 5 м ≤ h ≤ 10 м k h ≤ 20 м k = 1,5.


Для песчаных и пылевато-глинистых грунтов допускается определять модуль деформации на основе результатов статического и динамического зондирования грунтов. В качестве показателей зондирования принимают: при статическом зондировании — сопротивление грунта погружению конуса зонда q c , а при динамическом зондирований — условное динамическое сопротивление грунта погружению конуса q d . Для суглинков и глин E = 7q c и E = 6q d ; для песчаных грунтов E = 3q c , а значения Е по данным динамического зондирования приведены в таблице. Для сооружений I и II класса является обязательным сопоставление данных зондирования с результатами испытаний тех же грунтов штампами.

ЗНАЧЕНИЯ МОДУЛЕЙ ДЕФОРМАЦИИ Е ПЕСЧАНЫХ ГРУНТОВ ПО ДАННЫМ ДИНАМИЧЕСКОГО ЗОНДИРОВАНИЯ

Для сооружений III класса допускается определять Е только по результатам зондирования.


Определение модуля деформации в лабораторных условиях

В лабораторных условиях применяют компрессионные приборы (одометры), в которых образец грунта сжимается без возможности бокового расширения. Модуль деформации вычисляют на выбранном интервале давлений Δр = p 2 − p 1 графика испытаний (рис. 1.4) по формуле

E oed = (1 + e 0)β / a
где e 0 — начальный коэффициент пористости грунта; β — коэффициент, учитывающий отсутствие поперечного расширения грунта в приборе и назначаемый в зависимости от коэффициента Пуассона v ; а — коэффициент уплотнения;
a = (e 1 − e 2)/(p 2 − p 1)

СРЕДНИЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ПУАССОНА v β

КОЭФФИЦИЕНТЫ m ДЛЯ АЛЛЮВИАЛЬНЫХ, ДЕЛЮВИАЛЬНЫХ, ОЗЕРНЫХ И ОЗЕРНО-АЛЛЮВИАЛЬНЫХ ЧЕТВЕРТИЧНЫХ ГРУНТОВ ПРИ ПОКАЗАТЕЛЕ ТЕКУЧЕСТИ I L ≤ 0,75

НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИИ c φ , град, ПЕСЧАНЫХ ГРУНТОВ

Песок Характеристика Значения с и φ при коэффициенте пористости e
0,45 0,55 0,65 0,75
Гравелистый и крупный с
φ
2
43
1
40
0
38
-
-
Средней крупности с
φ
3
40
2
38
1
35
-
-
Мелкий с
φ
6
38
4
36
2
32
0
28
Пылеватый с
φ
8
36
6
34
4
30
2
26

НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИЯ c , кПа, И УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ , град, ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ЧЕТВЕРТИЧНЫХ ОТЛОЖЕНИЙ

Грунт Показатель текучести Характеристика Значения с и φ при коэффициенте пористости е
0,45 0,55 0,65 0,75 0,85 0,95 1,05
Супесь 0<I L ≤0,25 с
φ
21
30
17
29
15
27
13
24
-
-
-
-
-
-
0,25<I L ≤0,75 с
φ
19
28
15
26
13
24
11
21
9
18
-
-
-
-
Суглинок 0<I L ≤0,25 с
φ
47
26
37
25
31
24
25
23
22
22
19
20
-
-
0,25<I L ≤0,5 с
φ
39
24
34
23
28
22
23
21
18
19
15
17
-
-
0,5<I L ≤0,75 с
φ
-
-
-
-
25
19
20
18
16
16
14
14
12
12
Глина 0<I L ≤0,25 с
φ
-
-
81
21
68
20
54
19
47
18
41
16
36
14
0,25<I L ≤0,5 с
φ
-
-
-
-
57
18
50
17
43
16
37
14
32
11
0,5<I L ≤0,75 с
φ
-
-
-
-
45
15
41
14
36
12
33
10
29
7

ЗНАЧЕНИЯ УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ ПЕСЧАНЫХ ГРУНТОВ ПО ДАННЫМ ДИНАМИЧЕСКОГО ЗОНДИРОВАНИЯ

ОРИЕНТИРОВОЧНЫЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ФИЛЬТРАЦИИ ГРУНТОВ

ЗНАЧЕНИЯ СТАТИСТИЧЕСКОГО КРИТЕРИЯ

Число
определений
v Число
определений
v Число
определений
v
6 2,07 13 2,56 20 2,78
7 2,18 14 2,60 25 2,88
8 2,27 15 2,64 30 2,96
9 2,35 16 2,67 35 3,02
10 2,41 17 2,70 40 3,07
11 2,47 18 2,73 45 3,12
12 2,52 19 2,75 50 3,16

ТАБЛИЦА 1.22. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА t α ПРИ ОДНОСТОРОННЕЙ ДОВЕРИТЕЛЬНОЙ ВЕРОЯТНОСТИ α

Число
определений
n −1 или n −2
t α при α Число
определений
n −1 или n −2
t α при α
0,85 0,95 0,85 0,95
2 1,34 2,92 13 1,08 1,77
3 1,26 2,35 14 1,08 1,76
4 1,19 2,13 15 1,07 1,75
5 1,16 2,01 16 1,07 1,76
6 1,13 1,94 17 1,07 1,74
7 1,12 1,90 18 1,07 1,73
8 1,11 1,86 19 1,07 1,73
9 1,10 1,83 20 1,06 1,72
10 1,10 1,81 30 1,05 1,70
11 1,09 1,80 40 1,06 1,68
12 1,08 1,78 60 1,05 1,67

1. ОБЩИЕ СВЕДЕНИЯ.

Инженерно-геологические изыскания, для проектирования и строительства внутриквартальных проездов в Ломоносовском районе Ленинградской области в районе д. Велигонты ДНП «Малиновка» проводились по заказу ДНП «Малиновка» на основании договора № 06/13-Г от 01.01.2001 г., технического задания заказчика и уведомления на производство изысканий Комитета государственного строительного надзора и государственной экспертизы Ленинградской области № 000/13 от 29.03.13 г.

В соответствии с техническим заданием Заказчика пройдено 7 скважин глубиной по 4,0 метра, диаметром 93-72 мм, буровой установкой УКБ-12/25, всего 28,0 пог. м.

Буровые работы выполнялись буровой бригадой при участии главного геолога 25.02.2013 г. В процессе бурения отбирались пробы грунта для лабораторных исследований в соответствии с требованиями ГОСТ. Всего отобрано 19 образцов грунта нарушенной и ненарушенной структуры для определения физических свойств грунтов, 2 пробы воды. Пройденные выработки затампонированы в соответствии с требованиями «ВТУ по производству ликвидационного тампонажа скважин, проходимых при инженерно-геологических изысканиях » (ГРИИ Глав АПУ, Л. 1987 г.)

Акт тампонажа скважин прилагается (Приложение)

Выполненные объемы работ в целом соответствуют программе работ и техническому заданию. Акт технической приемки полевых работ прилагается (Приложение).

Камеральные работы выполнялись в соответствии с требованиями СНиП, СП, СНиП 2-03.03-85, ГОСТ, ГОСТ геологом Зайцевым работа принята внутриведомственной комиссией, акт прилагается (Приложение).

При составлении заключения использованы материалы изученности, Геология СССР, т.1, 1967 г., «Гидрогеология СССР», т. III, действующие нормативные документы. Графические материалы оформлялись по ГОСТ 21.302-96, СНиП II-9-78.

2. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ

участка изысканий

2.1. Характеристика района работ

Рассматриваемый участок изысканий расположен в районе д. Велигонты, Ломоносовского района, Ленинградской области. Трасса проходит по лугу. Вся территория представляет заброшенные сельскохозяйственные угодья.

В геоморфологическом отношении территория работ входит в пределы слабоволнистой прикамовой равнины. Рельеф местности – равнина, слегка волнистая, с плавными колебаниями поверхности, с абсолютными отметками устьев скважин от 49,84 до 58,30 м.

Климат данной территории умеренный и влажный, переходной от морского к континентальному, влияние на него оказывают массы воздуха, поступающие с Атлантики – преобладают ветры западных, юго-западных и северо-западных направлений. Характерная для данной территории сильная циклоническая деятельность обуславливает изменчивость погоды и ее неустойчивость на протяжении года. По данным многолетних наблюдений средняя годовая

температура воздуха составляет +4,3 градуса, самый холодный месяц – февраль, самый теплый – июль.

2.2. Геологическое строение

В геологическом строении территории, до изученной глубины 4,0 м, принимают участие современный Почвенно-растительный слой (p IY), а также верхнечетвертичными озерно-ледниковые (lg III) отложения, представленные в пройденных скважинах суглинками полутвердыми, туго - и мягкопластичными, реже текучими.

В соответствии с приложением Б СП изысканный участок строительства относится к II (средней сложности) категории по сложности инженерно-геологических условий.

2.3. Гидрогеологические условия

4. На момент бурения (февраль 2013 г.) подземные воды вскрыты в скважинах №2,7 на глубине от 2,2м. до 3,1 м. Питание подземных вод осуществляется за счет инфильтрации атмосферных осадков. Амплитуда колебания сезонного уровня подземных вод составляет до 1,5м (по режимным наблюдениям ПГО «Севзапгеология»). Максимальный уровень подземных вод следует ожидать в периоды снеготаяния и интенсивных дождей.

5. По химическому составу воды пресные, хлоридно-гидрокарбонатные, магний-кальциевые, слабоагрессивны по отношению к бетону марки W4 по водородному показателю и содержанию агрессивной углекислоты. Коррозионная агрессивность воды по ГОСТ 9. по отношению к свинцовой оболочке кабеля средняя, к алюминиевой - средняя (приложение 9).

Значения коэффициента фильтрации составляют: для суглинков 0,001-0,05 м/сут.

6. Коррозионная агрессивность грунтов по ГОСТ 9. к свинцовой оболочке кабеля – высокая, к алюминиевой – средняя, к стали – средняя (Приложение).

В соответствии СНиП 2.03.11-85 по отношению к бетону нормальной проницаемости грунты неагрессивны.

7. По степени относительной деформации пучения, в соответствии со СНиП 2.05.02-85, суглинки полутвердые (ИГЭ-1) к слабопучинистым, суглинки тугопластичные (ИГЭ-2) к среднепучинистым, суглинки мягкопластичные (ИГЭ-3) и суглинки текучие (ИГЭ-4) к сильнопучинстым.

8 Нормативная глубина промерзания, в соответствии со СП 22.13330.2011 составляет для суглинков – 1,45м,

9. Дорожные работы елательно производить при подсыхании грунтов, во избежание разжижения при использовании техники после схода снега и сильных дождей.

10. По трудности разработки одноковшовым экскаватором грунты относятся по ГЭСН выпуск 4табл. 1-1 к следующим категориям:

Почвенно-растительный слой ………………. . . I (п. 9а);

суглинки I (п. 36а)

11. Сейсмичность территории 5 баллов по карте сейсмического районирования

4. ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ

И ГИДРОГЕОЛОГИЧЕСКИЕ УСЛОВИЯ

В геологическом строении исследованного участка проектируемых внутриплощадочных линейных инженерных сетей до разведанной глубины 5,0м участвуют четвертичные суглинисто-супесчаные отложения покровного (pQ III - IV), флювиогляциального (fQ II), озерно-ледникового (lgQ II) и моренного (gQ II) генезиса, перекрытые с поверхности почвенно-растительным слоем (черт.3-7).

Почвенно-растительный слой с корнями травянистой растительности представлен мерзлым суглинистым гумусированным грунтом буровато-коричневого цвета, мощностью 0,1-0,3м.

Покровные отложения (pQ III - IV) распространены повсеместно, залегают с поверхности и представлены суглинками полутвердыми, в кровле слоя до глубины 0,5м – мерзлыми, темно-коричневыми и буровато-коричневыми, пылеватыми, с растительными остатками. Мощность покровных суглинков изменяется от 0,6 до 1,6м.

Флювиогляциальные отложения (fQ II) распространены повсеместно, залегают под покровными суглинками с глубины 0,7-1,8м и представлены:

а) суглинками тугопластичными, коричневыми и светло-желто-коричневыми, легкими и тяжелыми, с включениями гравия и гальки до 3-5%, песчанистыми, с гнездами песка желто-коричневого, мелкого, влажного. Залегают выдержанным слоем мощностью 1,4-2,3м.

б) супесями пластичными, коричневыми и желтовато-коричневыми, иногда суглинками мягкопластичными, песчанистыми, с прослойками и линзами песка желто-коричневого, пылеватого, влажного. Залегают с глубины 2,2-4,0м маломощным слоем мощностью 0,5-1,4м.

Озерно-ледниковые отложения (lgQ II) распространены в юго-восточной части площадки, залегают под флювиогляциальными отложениями с глубины 3,5-4,7м и представлены суглинками (до глин) полутвердыми, реже - тугопластичными, светло-серыми и серо-коричневыми, с зеленоватым оттенком, тяжелыми, с включением гравия и гальки до 10%, вскрытой мощностью до 0,8м.

Моренные отложения (gQ II) залегают с глубин 3,9-4,9м под флювиогляциальными или озерно-ледниковыми отложениями и представлены суглинками полутвердыми, тяжелыми, красно-коричневыми и буровато-коричневыми, с включением гальки, дресвы и щебня до 10-15%, слабопесчанистыми. Вскрытая мощность моренных суглинков до 1,1м.

Гидрогеологические условия исследованной площадки

Стр.9

5. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА

И СВОЙСТВА ГРУНТОВ

По данным бурения 21 скважины на глубину до 5,0м, лабораторных исследований грунтов, а также с учетом архивных материалов , площадка проектируемых внутриплощадочных линейных инженерных сетей, представлена грунтами четырех стратиграфо-генетических комплексов (СГК), содержащих в своем составе 5 инженерно-геологических элементов (ИГЭ), с относительно равномерным, но с выклиниванием отдельных ИГЭ, напластованием грунтов, в том числе:

Таблица 5.1

Генезис и возраст

Наименование грунта

Мощность

Суглинок полутвердый

Суглинок тугопластичный

Супесь пластичная

Суглинок (до глины) полутвердый

вскрытая

Суглинок полутвердый

вскрытая

Ниже приводится краткая характеристика основных стратиграфо-генетических комплексов и выделенных ИГЭ.

I . Покровные отложения (pQ III ) распространены повсеместно, залегают под почвенно-растительным слоем и представлены полутвердым (в кровле - до глубины 0,5м – мерзлым) пылеватым суглинком, мощностью 0,6-1,6м.

ИГЭ-1. Суглинок покровный полутвердый , с растительными остатками.

По лабораторным испытаниям суглинок ИГЭ-1 характеризуется следующими средними значениями параметров физических свойств:

влажность на границе раскатывания W p -19,8%;

число пластичности I p -13,2%;

природная влажность W п -21,5%;

показатель текучести I L - 0,13;

плотность грунта r – 1,94 г/см 3 ;

коэффициент пористости е –0,70.

По степени морозоопасности покровные суглинки ИГЭ-1, с учетом показателя текучести I L = 0,13, являются слабопучинистыми, с относительной деформацией пучения от 0,01 до 0,035 д.е. (табл. Б-27, ГОСТ 25100).

II . Комплекс водно-ледниковых (флювиогляциальных) отложений времени регрессии московского ледника (f Q II ) имеет повсеместное распространение, залегает с глубины 0,7-1,8м под покровными суглинками и представлен, в основном, суглинисто-супесчаными отложениями, с гнездами и прослоями песков. В составе водно-ледникового комплекса выделены два инженерно-геологических элемента:

- суглинок ИГЭ-2 - распространен повсеместно, залегает выдержанным слоем мощностью 1,4-2,3м;

Стр.10

- супесь ИГЭ-3 - распространена повсеместно, залегает в виде маломощного слоя мощностью от 0,5м до 1,4м.

ИГЭ-2. Суглинок флювиогляциальный тугопластичный, легкий и тяжелый, с включениями гравия и гальки до 3-5%, песчанистый, с гнездами песка мелкого, влажного.

По лабораторным испытаниям суглинок ИГЭ-2 характеризуется следующими средними значениями параметров физических свойств:

число пластичности I p -11,3%;

природная влажность W п -21,9%;

показатель текучести I L - 0,34;

плотность грунта r – 1,99 г/см 3 ;

коэффициент пористости е –0,66.

По степени морозоопасности флювиогляциальные суглинки ИГЭ-2, с учетом показателя текучести I L =0,34, являются среднепучинистые, с относительной деформацией пучения от 0,035 до 0,07 д.е. (табл. Б-27, ГОСТ 25100).

ИГЭ-3. C упесь флювиогляциальная пластичная , иногда суглинок мягкопластичный, песчанистый, с прослойками и линзами песка пылеватого, влажного.

По лабораторным испытаниям супесь ИГЭ-3 характеризуется следующими средними значениями параметров физических свойств:

влажность на границе раскатывания W p -18,0%;

число пластичности I p -6,7%;

природная влажность W п -21,3%;

показатель текучести I L - 0,50;

плотность грунта r – 2,01 г/см 3 ;

коэффициент пористости е –0,62.

По степени морозоопасности супеси ИГЭ-3, залегающие в зоне сезонного промерзания, с учетом показателя текучести I L =0,50, являются среднепучинистые, с относительной деформацией пучения от 0,035 до 0,07 д.е. (табл. Б-27, ГОСТ 25100).

III . Комплекс озерно-ледниковых отложений (lgQ II ) имеет локальное распространение (в юго-восточной части площадки), залегает с глубины 3,5-4,7м под флювиогляциальными отложениями и представлен суглинисто-глинистыми отложениями, вскрытой мощностью до 0,8м.

ИГЭ-4. Суглинок (до глины) озерно-ледниковый, полутвердый , тяжелый, с включением гравия и гальки до 10%.

По лабораторным испытаниям суглинок ИГЭ-4 характеризуется следующими средними значениями параметров физических свойств:

влажность на границе раскатывания W p -19,7%;

число пластичности I p -16,7%;

природная влажность W п -22,1%;

показатель текучести I L - 0,15;

плотность грунта r – 1,98 г/см 3 ;

коэффициент пористости е –0,68.

Стр.11

По степени морозоопасности озерно-ледниковые суглинки ИГЭ-4 находятся вне зоны промерзания.

I V. Комплекс ледниковых отложений (морена времени отступления ледника московского возраста (g Q II ) имеет широкое распространение в пределах участка, представлен суглинистыми породами, иногда слабопесчанистыми, содержащие до 15% окатанного и неокатанного обломочного материала.

ИГЭ-5. Суглинок моренный полутвердый , песчанистый, с включением гравия, гальки, дресвы и щебня до 10-15 %, залегает с глубины 3,9-4,9м слоем вскрытой мощностью до 1,1м.

По лабораторным испытаниям суглинок ИГЭ-5 характеризуется следующими средними значениями параметров физических свойств:

влажность на границе раскатывания W p -16,1%;

число пластичности I p -13,3%;

природная влажность W п -17,4%;

показатель текучести I L - 0,10;

плотность грунта r – 2,09 г/см 3 ;

коэффициент пористости е –0,52.

По степени морозоопасности моренные суглинки ИГЭ-5 находятся вне зоны промерзания.

Основные показатели физических свойств грунтов сведены в таблицу 5.2.

Таблица 5.2. Показатели физических свойств грунтов

Стратиграфо-генетический комплекс

Наименование

инженерно-

геологического

элемента

Плотность грунта,

Плотность частиц грунта, г/см 3

Число пластичности

Показатель текучести

Коэффициент пористости

Степень влажности

Относительная деформация морозного пучения

r S

I P

I L

S r

ε fn

Суглинок

полутвердый

Суглинок

тугопластичный

Супесь пластичная

Суглинок (до глины)

полутвердый

Суглинок

полутвердый

Распространение выделенных инженерно-геологических элементов, условия их залегания на площадке проектируемого строительства внутриплощадочных трасс коммуникаций приведены на инженерно-геологических разрезах и колонках скважин (черт.№№ 3-13).

Стр.12

Физические характеристики грунтов, полученные по лабораторным исследованиям, их статистическая обработка (по ГОСТ 20522-96) приведены в приложении 3. Величины статистических критериев изменчивости показателей находятся в допустимых пределах.

По данным химических анализов грунты участка незасоленные, рН =6,8-7,4.

По степени агрессивности к бетонам марок W 4 , W 6 , W 8 и к железобетонным конструкциям (СНиП 2.03.11-85) грунты неагрессивные (прил.4).

Оценка коррозионной активности грунтов зоны аэрации по отношению к:

свинцовым оболочкам кабеля – высокая (по содержанию органики);

алюминиевым оболочкам кабеля – средняя (по хлор-иону);

углеродистой стали – средняя (по удельн. электрическому сопротивлению).

Нормативная глубина сезонного промерзания по СНиП 23-01-99 и «Пособию по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83*)» составляет: для суглинков – 132см, для супесей, песков мелких и пылеватых – 160см.

Нормативные и расчетные (при a=0,85 и a=0,95) значения основных физико-механических характеристик грунтов выделенных ИГЭ в соответствии с СНиП 2.02.01 -83*, СП 11-105-97 приведены в таблице 5.3. текста отчета «Рекомендуемые нормативные и расчетные значения характеристик физико-механических свойств грунтов».

Нормативные

Стр.14

6. ЗАКЛЮЧЕНИЕ

Инженерно-геологические изыскания на участке проектируемых внутриплощадочных линейных инженерных сетей для коттеджного поселка «Южные горки» (II очередь), расположенного по адресу: Московская область, Ленинский район, вблизи пос. Мещерино выполнены на стадии П с целью изучения инженерно-геологических условий.

В геоморфологическом отношении территория коттеджного поселка приурочена к пологоволнистой водно-ледниковой равнине. Поверхность площадки свободна от застройки и растительности, имеет небольшой уклон к юго-западу. Абсолютные отметки поверхности изменяются от 171,51 до 176,06м (по устьям выработок).

Современные физико-геологические процессы, способные негативно повлиять на строительство проектируемых внутриплощадочных линейных инженерных сетей, на исследованной территории коттеджного поселка в процессе изысканий не отмечены.

В геологическом строении исследованного участка проектируемых внутриплощадочных линейных инженерных сетей до разведанной глубины 5,0м участвуют четвертичные суглинисто-супесчаные отложения покровного (pQ III - IV), флювиогляциального (fQ II), озерно-ледникового (lgQ II) и моренного (gQ II) генезиса, перекрытые с поверхности почвенно-растительным слоем, мощность 0,1-0,3м.

Гидрогеологические условия участка проектируемого строительства характеризуются отсутствием подземных вод постоянного характера в пределах разведанных глубин (до 5м) на период изысканий (март 2010г.).

Однако, в период продолжительных ливневых дождей и активного весеннего снеготаяния, а также в случае нарушения поверхностного стока и утечек из проектируемых водонесущих коммуникаций возможно появление временных подземных вод типа «верховодки» в опесчаненных разностях флювиогляциальных отложений на глубинах 2,2-4,0м. Относительным водоупором для этих вод являются озерно-ледниковые и моренные суглинки.

В разведанной толще выделено четыре стратиграфо-генетических комплекса (СГК), содержащих в своем составе 5 инженерно-геологических элементов (ИГЭ), условия распространения и залегания которых показаны на инженерно-геологических разрезах и колонках скважин, а рекомендуемые нормативные и расчетные значения характеристик физико-механических свойств грунтов выделенных ИГЭ приведены в таблице 5.3. текста отчета «Рекомендуемые нормативные и расчетные значения характеристик физико-механических свойств грунтов».

Коррозионная активность грунтов зоны аэрации к свинцовым оболочкам кабелей – высокая; к алюминиевым оболочкам кабелей, а также к углеродистой стали – средняя. Грунты выделенных ИГЭ неагрессивны к бетонам всех марок по водонепроницаемости на любом цементе, а также неагрессивны к железобетонным конструкциям.

Нормативная глубина промерзания суглинков – 1,32м, супесей – 1,60м.

Стр.15

По степени морозного пучения грунты, залегающие в зоне сезонного промерзания – от слабо - до среднепучинистых.

По степени развития карстово-суффозионной опасности площадка работ относится к неопасной категории (МГСН 2.07-01).

По комплексу факторов инженерно-геологические условия исследованной площадки средней сложности (II кат. сложности по прил. Б СП 11-105-97, ч.I), и в целом, благоприятные для строительства проектируемых внутриплощадочных коммуникаций.

Исходя из инженерно-геологических условий участка проектируемого строительства, в проекте следует предусмотреть защиту стальных, алюминиевых и свинцовых конструкций от агрессивного воздействия грунтов.

Стр.16

СПИСОК ЛИТЕРАТУРЫ

Фондовая

    Технический отчет об инженерно-геологических изысканиях. Внутриплощадочные трассы коммуникаций для коттеджного поселка «Южные горки» по адресу: Московская область, Ленинский район, вблизи д. Коробово, ООО «Оргстройизыскания», инв. № ИГ-Т-09-11, 2009г.

    Технический отчет об инженерно-геологических изысканиях. Водозаборный узел для коттеджного поселка «Южные горки» вблизи д. Коробово, Ленинского района, Московской области, ООО «Оргстройизыскания», инв. № ИГ-Т-09-12, 2009г.

3. Пособие по проектированию оснований зданий и сооружений (СНиП 2.02.01-83), Москва, Стройиздат, 1986г.

4. МГСН 2.07-01.Московские городские строительные нормы. Основания, фундаменты и подземные сооружения. Москва, 2003г.

5. ТСН ИЗ-2005 МО. Территориальные строительные нормы. Организация производства инженерных изысканий для обеспечения безопасности обьектов градостроительства на территории Московской области.

6. Порядок выполнения инженерных изысканий для подготовки проектной документации, строительства, реконструкции, капитального ремонта объектов капитального строительства на территории Московской области. (Министерство строительного комплекса МО, 2009г.)

7. Инструкция по инженерно-геологическим и геоэкологическим изысканиям в г. Москве от 11.03.04г,Москомархитектура, М., 2004г.

Строительные нормы и правила

СНиП 11-02-96 – «Инженерные изыскания для строительства. Основные положения».

СП 11-105-97 «Инженерно-геологические изыскания для строительства».

СП 11-104-97 «Инженерно-геодезические изыскания для строительства».

СП 11-102-97 «Инженерно-экологические изыскания для строительства».

СП 50-101-2004 «Проектирование и устройство оснований и фундаментов зданий и сооружений ».

СНиП 2.02.01 -83* «Основания зданий и сооружений»

СНиП 2.03.11-85 «Защита строительных конструкций от коррозии».

СНиП 2.06.15-85 «Инженерная защита территорий от затопления и подтопления».

СНиП 3.02.01-87 «Земляные сооружения, основания и фундаменты».

СНиП 23-01-99 «Строительная климатология»

СНиП 22-02-2003 «Инженерная защита территорий, зданий и сооружений от опасных геологических процессов».

Стр.17

Государственные стандарты

ГОСТ 25100-95 «Грунты. Классификация».

ГОСТ 12071-2000 «Грунты. Отбор, упаковка, транспортирование, хранение образцов».

ГОСТ 5180-84 «Грунты. Методы лабораторного определения физических характеристик».

ГОСТ 12536-79 «Грунты. Методы лабораторного определения гранулометрического состава».

ГОСТ 12248-96 «Грунты. Методы лабораторного определения характеристик прочности и деформируемости».

ГОСТ 20522-96 «Грунты. Методы статистической обработки результатов испытаний».

ГОСТ 9.602-2005 «Сооружения подземные. Общие требования к защите от коррозии».

ГОСТ 4979-94 «Воды подземные. Хозяйственно-питьевого и промышленного водоснабжения. Методы химического анализа».

ГОСТ 21.302-96 «Условные графические обозначения в документации по инженерно-геологическим изысканиям».

ГОСТ 21.101-97 «Основные требования к проектной и рабочей документации».

введениеПояснительная записка

Экологическая стратегия ОАО «АК «Транснефть» (пояснительная записка ) 1. Введение В соответствии с утвержденной «Экологической политикой ОАО « ... запланирована в размере 5000,0 тыс. руб. - с введением в эксплуатацию в Альметьевском РНУ 117 км...