В наше время просто невозможно представить себе деятельность человека без использования продукции металлургической отрасли. Различные металлы и сплавы буквально заполонили нашу жизнь. Не стала исключением и сталь углеродистая, которая нашла свое активное применение практически во всех отраслях и сферах народного хозяйства. О ее свойствах, назначении и составе пойдет речь в данной статье.

Определение

Итак, в первую очередь укажем, что сталь углеродистая – сплав железа с углеродом. При этом содержание последнего элемента должно быть не более 2,14% . Отдельно стоит рассмотреть классификацию. Такая сталь может быть разделена по:

  • структуре;
  • способу получения;
  • степени раскисления;
  • качеству;
  • назначению.

Обо всем этом будет сказано ниже.

Структура сплава

Сталь углеродистая бывает:

  • доэвтектоидная (содержание углерода составляет менее 0,8%);
  • эвтектоидная (углерод имеет концентрацию 0,8%);
  • заэвтектоидная (углерода более 0,8%).

Такая градация позволяет определять свойства углеродистой стали.

Способы производства

Абсолютно любая сталь изначально в своей основе имеет чугун, который впоследствии перерабатывают по особой технологии. Сталь углеродистая может быть создана тремя основными методами:

  • конверторной плавкой;
  • мартеновской плавкой;
  • электротермической обработкой.

Получение стали в конвертере происходит благодаря продуванию расплавленного чугуна кислородом под давлением. Сам по себе конвертер – печь грушевидной формы, футерованная изнутри специальным огнеупорным кирпичом. В зависимости от того, какая кладка (динас SiO 2 или доломитная масса CaO и MgO) находится внутри конвертера, идет разделение этого способа на бессемеровский и томасовский.

Приготовление стали в мартеновской печи сводится к выжиганию углерода из чугуна кислородом, находящимся не только в воздухе, но и в оксидах железа, которые попадают в печь в виде металлолома и железной руды.

Мартеновский способ, в отличие от конверторного, предусматривает регулирование химического состава готового продукта на выходе путем внедрения металлических компонентов в требуемой пропорции. К сожалению, несмотря на свои достоинства, мартеновский способ получения стали сегодня уже неактуален по причине своей технологической отсталости и слишком большого количества вредных выбросов в окружающую среду.

В электротермических печах производится сталь самого высокого качества. Это возможно благодаря тому, что воздух в печь извне практически не поступает. За счет этого вредоносный монооксид железа почти не образуется, а именно он снижает свойства стали и загрязняет ее. Кроме того, температура в печи не опускается ниже 1650 °C, что, в свою очередь, позволяет удалять нежелательные примеси в виде фосфора и серы.

Шихта для таких печей бывает различной: чугун может преобладать по количеству, но иногда большую часть составляет металлический лом. Также есть возможность легирования стали очень тугоплавкими материалами – вольфрамом и молибденом. Пожалуй, единственным существенным недостатком такого метода производства стали можно считать его энергоемкость, поскольку на одну тонну выплавляемой массы может приходиться до 800 кВт/ч.

Химические компоненты

Состав углеродистой стали стоит рассмотреть более детально. Первоочередно укажем на углерод. Именно этот элемент оказывает прямое влияние на прочность и твердость стали: чем его больше, тем выше названные характеристики, пластичность же при этом снижается.

Марганец и кремний не являются теми составляющими, которые оказывают существенное влияние на свойства стали. В процессе плавки они вводятся с целью раскиления.

Крайне вредной примесью считается сера. Из-за нее сталь становится ломкой во время ее обработки давлением с предварительным подогревом. Также сера снижает прочность, стойкость к износу и коррозии.

Фосфор приводит к возникновению хладноломкости – хрупкости при низких температурах.

Феррит привносит в сталь мягкую и пластичную микроструктуру. Его антиподом является цементит – карбид железа, наращивающий твердость.

Виды термической обработки

Углеродистые стали, применение которых возможно почти везде, где человек осуществляет свою жизнедеятельность, способны существенно изменять свои механические свойства. Для этого следует выполнить термическую обработку, смысл которой заключается в изменении структуры стали во время нагрева, выдержке и последующем охлаждении на основании специального режима.

Существуют такие виды температурной обработки:

  • Отжиг – снижает твердость и измельчает зерна, повышает обрабатываемость, вязкость и пластичность, снижает внутренние напряжения, устраняет структурные неоднородности.
  • Нормализация – исправляет структуру перегретой и литой стали, устраняет сетку вторичного цементита в заэвтектоидной стали.
  • Закалка – позволяет получить высочайшую твердость и прочность.
  • Отпуск.

Дифференциация по назначению

Сталь углеродистая делится на две большие группы:

  • инструментальная;
  • конструкционная (выделяют обыкновенные, качественные и автоматные разновидности).

Обыкновенные стали маркируются буквами "Ст" и номером от 0 до 6. Все стали с номером марки от 1 до 4 производят кипящими, полуспокойными и спокойными. Номера 5 и 6 могут быть только спокойными или полуспокойными. Кроме того, эти стали делятся на три большие группы: А, Б, В.

  • Группа А. Чем выше номер в маркировке стали, тем больше прочность.
  • Группа Б. С увеличением номера повышается содержание углерода.
  • Группа В. Механические свойства соответствуют группе А, химический состав – группе Б аналогичного номера.

Наиболее часто в строительстве применяются типы Ст1 и Ст2. Именно эти марки задействованы при создании резервуаров, трубопроводов, колонн. Ст3 и Ст 4 актуальны для возведения конструкций, а также из них производится арматура для железобетона. Углеродистая сталь ГОСТ 380-2005 является основой для листового, круглого, двутаврового и швеллерного проката.

Качественные стали характеризуются дешевизной и качественностью. Маркируют их следующим образом: от 08 до 85 с приставкой в конце "ПС" (полуспокойная), "СП" (спокойная), "КП" (кипящая). Цифра показывают концентрацию углерода в сотых долях процента.

Инструментальные стали применяют для изготовления трех основных групп инструмента: режущего, измерительного, штампованного. Цифры в маркировке сигнализируют о содержании углерода в десятых долях процента.

Химикотермическое воздействие

Углеродистые и легированные стали могут быть подвержены специальным видам обработки.

Одним из них является цементация – процесс, представляющий собой диффузионное насыщение поверхностного слоя стали углеродом при нагреве в соответствующей среде. Конечной целью операции является получение высокой поверхностной твердости и износостойкости при вязкой сердцевине. Цементация также может происходить в твердом карбюрюзаторе, который является смесью древесного угля и углекислых солей.

Азотирование стали – процесс, заключающийся в диффузионном насыщении поверхностного слоя стали азотом. Данную процедуру проводят в атмосфере аммиака при температуре в пределах 500-700 градусов Цельсия. Азотирование проводят для получения поверхности детали, устойчивой к износу и коррозии и обладающей большой твердостью.

Борирование – верхний слой стали насыщают бором. Делается это для повышения износостойкости, жаростойкости и твердости.

Также для получения жаростойких поверхностей применяют алитирование – насыщение стали алюминием.

Легированные марки углеродистой стали

Эта большая группа делится на конструкционные, инструментальные и стали с особыми качествами. Первые применяются для изготовления зубчатых колес, втулок, шпилек и деталей, работающих в крайне сложных напряженных условиях. Кроме того, в эту группу входят пружинно-рессорные и шарикоподшипниковые стали.

Из инструментальных сталей производят режущий и измерительный инструмент.

Особые качества описанного материала проявляются в его окалино- и жаростойкости. Сюда же можно причислить и нержавеющие марки.

Заключение

Как вы уже, очевидно, поняли из всего вышесказанного, один из самых востребованных на сегодня материалов – углеродистая сталь (назначение ее имеет широкий спектр). Она является относительно недорогой основой для создания многих машин, механизмов, деталей, конструкций, зданий, сооружений и вообще многого из того, что нас с вами окружает. Мировыми лидерами по производству стали сейчас называют Китай, Японию, Германию, США. Именно эти страны задают тон в металлургии на планете.

Сталь - продукт черной металлургии, главный Из него производят строительную арматуру, металлопрокат различного профиля, трубы, детали, механизмы и инструменты.

Производство стали

Черная металлургия занимается и стали. Чугун - твердый, но не прочный материал. Сталь - прочный, надежный, пластичный, склонный к используемый в литейном производстве, прокатке, ковке и штамповке.

Существует несколько способов выплавки стали:

  1. Конверторный. Оборудование: Шихта (исходные материалы): стальной металлолом, известняк. Производятся только углеродистые стали.
  2. Мартеновский. Оборудование: мартеновская печь. Шихта: жидкий чугун, стальной металлолом, железная руда. Универсален как для углеродистых, так и для легированных сталей.
  3. Электродуговой. Оборудование: электродуговая печь. Шихта: стальной металлолом, чугун, кокс, известняк. Универсальный метод.
  4. Индукционный. Оборудование: индукционная печь. Шихта: стальной и чугунный металлолом, ферросплавы.

Суть процесса производства стали - уменьшение количества негативных химических включений с целью получения металла, который в народе называют «железом», а точнее - железоуглеродистого сплава с содержанием углерода в нем не больше 2,14%.

Процессы раскисления

Для стали на завершающем этапе выплавки характерен процесс кипения, на который влияют присущие в ней азот, водород, окиси углерода. Такой сплав в затвердевшем состоянии имеет пористую структуру, которая убирается прокаткой. Он мягкий и пластичный, однако недостаточно прочный.

Процесс раскисления заключается в деактивации кипящих примесей путем ввода в сплав ферромарганца, ферросилиция, алюминия. В зависимости от количества остаточных газов и раскислительных элементов, сталь может быть полуспокойная или спокойная.

Готовую сталь требуемой степени раскисления разливают в изложницы для кристаллизации и использования на последующих технологических этапах изготовления готовой стальной продукции.

Классификация углеродистой стали

Всю сталь, существующую на мировом рынке, можно разделить на углеродистую и легированную. Все марки углеродистой стали разделяются по разным группам классификатора и особенностям обозначения.

Исходя из основных классификационных признаков, выделяют:

  1. Углеродистые конструкционные стали. В них карбона меньше 0,8%. Они используются для изготовления арматуры, прокатной продукции и литья.
  2. Углеродистые инструментальные стали, которые содрежат карбон в количестве от 0,7% до 1,3%. Их используют для инструментов, оборудования приборов.

По способам раскисления:

  • кипящие - раскислительных элементов (РЭ) в составе меньше 0,05%;
  • полуспокойные - 0,05%≤РЭ≤0,15%;
  • спокойные - 0,15%≤РЭ≤0,3%.

По химическому составу:

  • малоуглеродистые (0,3%≤С);
  • среднеуглеродистые (0,3≤С≤0,65%);
  • высокоуглеродистые (0,65≤С≤1,3%).

В зависимости от микроструктуры:

  • доэвтектоидные - в такой стали углерода в составе меньше 0,8%;
  • эвтектоидные - это стали с содержанием углерода 0,8%;
  • заэвтектоидные - стали с содержанием углерода свыше 0,8%.

По качеству:

  1. Обычного качества. Серы здесь содержится меньше 0,06%, фосфора - не больше 0,07%.
  2. Качественные стали. Они не содержат серы и фосфора больше 0,04%.
  3. Высококачественные. Количество серы тут не превышает 0,025%, а фосфора - не больше 0,018%.

По основному стандарту марки углеродистой стали распределяют на:

  • конструкционные обычного качества;
  • конструкционные качественные;
  • инструментальные качественные;
  • инструментальные высококачественные.

Особенности маркировки конструкционной стали обыкновенного качества

Стали обыкновенного качества содержат: С - до 0,6%, S - до 0,06%, P - до 0,07%. Давайте рассмотрим, как маркируется эта углеродистая сталь. ГОСТ 380 определяет следующие нюансы обозначения:

  • А, Б, В - группа; А - не обозначается в марках;
  • 0-6 после букв «Ст» - порядковый номер, в котором зашифрован химический состав и (или) механический свойства;
  • Г - наличие Мангана Mn (марганца);
  • кп, пс, сп - степень раскисления (кипящая, полуспокойная, спокойная).

Цифры от 1 до 6 после обозначения степени раскисления через тире - это категории. При этом первая категория не обозначается никак.

Буквы же М, К в начале марки могут означать металлургический способ производства: мартеновский или кислородно-конверторный. Между прочим, углеродистые стали обыкновенного качества представлены количественным составом марок, примерно в 47 штук.

Классификация конструкционных сталей обыкновенного качества

Углеродистые стали обыкновенного качества разделяются на группы.

  • Группа А: стали, которые должны точно соответствовать заданным механическим свойствам. Потребителю они поставляются чаще всего в виде листового и многопрофильного проката (листы, тавры, двутавры, арматура, заклепки и корпуса). Марки: Ст0, Ст1 - Ст6 (кп, пс, сп), категории 1-3, в том числе Ст3Гпс, Ст5Гпс.
  • Группа Б: стали, которые должны быть регламентированы необходимым химическим составом и свойствами. Изготавливается литье и прокат, который будет подвергаться дополнительной механической обработке давлением в горячем состоянии (ковка, штамповка). Марки: БСт0, БСт1 (кп-сп), БСт2 (кп, пс), БСт3 (кп-сп, в том числе БСт3Гпс), БСт4 (кп, пс), БСт 6 (пс, сп), категории 1 и 2.
  • Группа В: стали, которые должны соответствовать нужным химическим, физическим, механическим и технологическим свойствам. Этой группе присуще разнообразие марок, из которых изготавливается пластичный листовой прокат, прочная арматура для работы в зонах значительных температурных перепадов, ответственные детали (болты, гайки, оси, пальцы поршней). Всю продукцию различного состава, свойств и марок этой группы объединяет хорошая технологическая свариваемость. Марки: ВСт1-ВСт6 (кп, пс, сп), ВСт5 (пс, сп), в том числе ВСт3Гпс, категории 1-6.

Конструкционные стали обыкновенного качества - сплавы, имеющие широкое разноплановое использование в промышленности.

Маркировка углеродистой качественной стали

Углеродистые качественные стали имеют в составе S и P не более 0,04%, соответственно.

Маркировка (ГОСТ 1050-88):

  • цифры 05-60 - зашифрованное наличие углерода (минимальное - 0,05%, максимальное - 0,6%);
  • кп, пс, сп - степень раскисления («сп» не обозначается);
  • Г, Ю,Ф - содержат марганец, алюминий, ванадий.

Исключения в маркировке

Углеродистые качественные стали в своей маркировке имеют исключения:

  • 15К, 20К, 22К - качественные стали, применимы в котлостроении;
  • 20-ПВ - углерода - 0,2%, сталь применима в изготовлении труб методом горячей прокатки, в котлостроении и монтаже отопительных систем, содержит медь и хром;
  • ОсВ - сталь для изготовления вагонных осей, содержит никель, хром, медь.

Для всех марок качественных сталей характерна возможная необходимость использования термической (к примеру, нормализация) и химико-термической обработки (к примеру, цементация).

Классификация углеродистых качественных сталей

Этот вид углеродистых сталей можно условно разделить на 4 группы:

  1. Высокопластичный материал, применимый для холодной механической обработки (прокатки), листовой и трубный прокат. Марки - сталь 08пс, сталь 08, сталь 08кп.
  2. Металл, используемый в горячей прокатке и штамповке, который будет работать в термически агрессивных условиях. Марки - от сталь 10 до сталь 25.
  3. Сталь, нашедшая применение в изготовлении ответственных деталей, в том числе пружин, рессор, муфт, болтов, валов. Марки - от сталь 60 до сталь 85.
  4. Стали, требующие надежной эксплуатации в агрессивных условиях (к примеру, цепь гусеничного трактора). Марки сталь 30, сталь 50, сталь 30Г, сталь 50Г.

Также возможно разделить на 2 группы все известные марки углеродистой стали из класса качественных: конструкционные обычные и конструкционные марганецсодержащие.

Применение углеродистой конструкционной стали

Класс стали по качеству Марка Применение
обычного качества Ст0 арматура, обшивка
Ст1 тавры, двутавры, швеллеры
Ст3Гсп строительный прокат
Ст5сп втулки, гайки, болты
Ст6пс строительные ломы
ВСт4кп фасонный, листовой, сортовой прокат для прочных конструкций
качественная Сталь10 трубы для котлов, штамповки
Сталь15 детали высокой пластичности, кулачки, болты, гайки
Сталь18кп сварные конструкции
Сталь 20пс оси, вилки, пальцы, штуцера, патрубки
Сталь50 зубчатые колеса, муфты сцепления
Сталь60 шпиндели, шайбы, пружинные кольца

Углеродистые инструментальные стали отличаются высокой прочностью и ударной вязкостью. Они обязательно подлежат многоступенчатой термообработке.

Марочное обозначение (ГОСТ 1435-74):

  • У - углеродистая инструментальная;
  • 7 -13 - содержание углерода в ней 0,7-1,3%, соответственно;
  • Г - наличие в составе марганца;
  • А - высококачественная.

Исключениями из основных принципов маркирования углеродистых инструментальных сталей - материал для деталей часовых механизмов А75, АСУ10Е, АУ10Е.

Требования к углеродистым инструментальным сталям

В соответствии с ГОСТом, инструментальные стали должны соответствовать ряду характеристик.

Необходимые физико-химические и механические свойства: качественные показатели твердости, ударной вязкости, прочности, стойкости к температурным изменениям во время эксплуатации (во время резки, сверления, ударных нагрузок), устойчивость к коррозии.

Заданные технологические свойства:

  • стойкость к негативным процессам технологии резания (налипание стружки, наклеп);
  • хорошая обрабатываемость точением и шлифованием;
  • податливость к термообработке;
  • стойкость к перегреву.

Для повышения качественных механических и технологических показателей инструментальные стали подвергают многоступенчатой термообработке:

  • отжиг исходного материала перед изготовлением инструментов;
  • закалка (охлаждение в растворах солей) и последующий отпуск готовых изделий (в основном, низкий отпуск).

Полученные свойства определяются химическим составом и полученной микроструктурой: мартенсит с цементитными и аустенитными включениями.

Использование углеродистых инструментальных сталей

Применяются описываемые стали для изготовления всевозможных инструментов: режущих, ударных, вспомогательных.

  • Сталь У7, У7А - молотки, зубила, топоры, стамески, кувалды, долота, рыболовные крючки.
  • Сталь У8, У8А, У8Г - пилы, отвертки, кернеры, зенковки, фрезы, плоскогубцы.
  • Сталь У9, У9А - слесарный инструмент, инструмент для резки по дереву.
  • У11, У11А - рашпили, метчики, вспомогательный инструмент для штамповки и калибровки.
  • У 12, У12А - развертки, метчики, измерительные инструменты.
  • У13, У13А - напильники, бритвенные и хирургические инструменты, штамповочные пуансоны.

Рациональный выбор марки углеродистой стали, технологии ее термообработки, понимание ее свойств и особенностей - залог длительной службы производимых, обрабатываемых или используемых конструкций или инструментов.

Углеродистой сталью называется инструментальная или конструкционная сталь, не содержащая легирующих добавок. Углеродистая сталь подразделяется на низкоуглеродистую (до 0,25% углерода), среднеуглеродистую (от 0,25 до 0,6% углерода) и высокоуглеродистую (до 2% углерода).

От обычных сталей углеродистую сталь отличает меньшее содержание примесей, небольшое содержание кремния, магния и марганца.

Углеродистая сталь отличается повышенной прочностью и высокой твердостью.

По качеству различают углеродистую сталь обыкновенную и качественную конструкционную.

Углеродистая сталь обыкновенного качества бывает холоднокатаная (тонколистовая) и горячекатаная (фасонная, сортовая, тонколистовая, толстолистовая, широкополосная). Она выпускается следующих марок: Ст1кп, СтО, Ст1пс, Ст2кп и т.д. Индексы в маркировке расшифровываются так: кп кипящая, пс полуспокойная.

Качественная конструкционная сталь - это кованные и горячекатаные заготовки толщиной до 250 мм, серебрянка (круглые прутки со специальной поверхностью) и калиброванная сталь. Она выпускается следующих марок: 05кп, 08кп, 08пс, 08, 10кп, 10пс, 10, 11кп, 15пс и т.д. Цифры в маркировке обозначают процентное содержание углерода (в сотых долях процента). Качественная конструкционная сталь используется для изготовления ответственных деталей механизмов и машин, штамповки.

Качественная сталь имеет в составе не более 0,03 % фосфора и серы, высококачественная не более 0, 02%.

Углеродистая сталь бывает разного назначения: предназначенная для статически нагруженного инструмента и для ударных нагрузок.

Для изготовления режущего инструмента с высокой твердостью, не испытывающего ударов (хирургический инструмент, напильники, шаберы, плашки, сверла, измерительные инструменты) используются стали У10?У13. Такие стали, подвергающиеся всем видам термообработки и содержащие хром, используются также для производства токарных резцов.

Для изготовления инструмента, подвергающегося ударным нагрузкам (топоры, пилы, деревообрабатывающие инструменты, зубила, клейма по металлу, отвертки) используются стали У7-У9. Они также подвергаются любому способу термообработки.

Вы можете заказать и купить углеродистую сталь, оформив заказ на нашем сайте.

Углеродистые стали содержат в своем составе углерод до 2,14%, марганец (до 0,8%), кремний (до 0,35%), серу (до 0,06%) и фосфор (до 0,07%). Перечисленные элементы всегда присутствуют в стали, и поэтому их классифицируют как постоянные примеси . Марганец и кремний вводят в стали с целью раскисления, присутствие серы и фосфора объясняется трудностью удаления их при выплавке.

Кремний растворяется в феррите и сильно упрочняет его, снижая при этом пластичность и значительно повышая предел текучести. При этом уменьшается способность стали к вытяжке и холодной высадке. Поэтому в сталях, предназначенных для холодной штамповки, содержание кремния должно быть сниженным.

Марганец повышает прочность феррита и уменьшает красноломкость стали, которую вызывает сера. С железом сера образует сульфид FeS, который практически не растворяется в железе и образует с ним эвтектику (Fe + FeS), плавящуюся при температуре 988°С. При кристаллизации эта эвтектика размещается вокруг зерен в виде оторочек. Во время горячей обработки при нагреве выше 1000°С эвтектика плавится, что приводит к нарушению связи между зернами и в металле при деформации возникают надрывы и трещины. Это явление называется красноломкостью стали. При наличии марганца в стали вместо сульфида железа образуется сульфид марганца MnS с температурой плавления 1620°С, благодаря чему устраняется явление красноломкости.

Соединения серы снижают механические свойства, особенно ударную вязкость и пластичность, резко снижают работу развития вязкой трещины и вязкость разрушения К 1С . Сульфиды ухудшают свариваемость и коррозийную стойкость.

Фосфор в малых количествах растворяется в железе, образуя твердый раствор. Растворяясь в феррите, фосфор уменьшает его пластичность и вязкость и резко повышает порог хладноломкости стали. Каждая 0,01% фосфора повышает переходную температуру хладноломкости на 20...25 о С. При повышенном содержании фосфор с железом образует фосфиды Fe 3 Р и Fe 2 P, которые в составе эвтектики размещаются по границам зерен и снижают прочность стали.

Существуют в сталях так называемые скрытые примеси, к которым относят кислород 0,002...0,008%), азот (0,002...0,007%), водород (0,0001...0,0007%). Эти примеси могут находиться в стали в виде хрупких неметаллических включений (FeO, Al 2 O 3 , Fe 4 N) или твердого раствора, а также быть в свободном виде в дефектных участках металла (трещинах, раковинах и др.). При плавлении они растворяются в стали, а затем выделяются при охлаждении, главным образом, по границам зерен, что снижает сопротивление хрупкому разрушению. Кроме того, неметаллические включения есть концентраторами напряжений. Наличие водорода становится причиной возникновения в легированных сталях флокенов (микронесплошностей металла диаметром до 10…15 мм в центральной части поковки).

Неметаллические включения являются хрупкими и во время прокатки разбиваются, располагаясь в стали в виде цепочек. При этом образуются микроскопические концентраторы напряжений, что снижает характеристики усталости и ударную вязкость.

Некоторые примеси попадают в сталь при выплавке из скрапа и называются случайными . К таким примесям относятся хром, никель, медь при наличии до 0,3%. Влияние их в таком количестве на свойства сталей незначительно.

Наибольшее влияние на свойства стали имеет углерод. На рисунке 6 приведены кривые зависимости прочности и пластичности стали от содержания в ней углерода. Видно, что углерод очень резко повышает свойства прочности при одновременном снижении пластичности и вязкости. Это объясняется тем, что цементитные включения тормозят передвижение дислокаций в феррите и, естественно, при увеличении количества повышается их влияние.

При увеличении количества углерода переходная температура хладноломкости стали резко повышается. Каждая 0,1% С повышает на 20 о С температуру перехода от вязкого к хрупкому разрушению.

Углерод влияет также и на другие физические свойства стали, в частности, с повышением количества углерода увеличивается электросопротивление и коэрцитивная сила, а магнитная проницаемость уменьшается.

Углеродистые стали подразделяются по способу производства в зависимости от используемых плавильных агрегатов на конверторную, мартеновскую и электросталь. При этом по способу раскисления сталь может быть кипящей (раскислена только марганцем), полуспокойной (раскислена марганцем и кремнием) и спокойной (раскислена марганцем, кремнием и алюминием).

Рисунок 6 - Зависимость механических свойств стали (а) и

фазового состава (б) от содержания углерода

1.4.2.1 Классификация и маркировка углеродистых сталей

По структуре в равновесном состоянии различают доэвтектоидные, эвтектоидные и заэвтектоидные стали. Доэвтектоидные стали содержат углерода от 0,025 до 0,8%, их структура состоит из феррита и перлита. Содержание углерода в эвтектоидной стали составляет 0,8% С при полностью перлитной структуре. В заэвтектоидных сталях наряду с перлитной составляющей образуются цементитные включения, а содержание углерода может изменяться от 0,8 до 2,14%.

Наиболее распространена классификация углеродистых сталей по качеству, которое определяется содержанием серы и фосфора, В соответствии с этим признаком стали бывают обыкновенного качества, качественные и высококачественные.

Углеродистые стали обыкновенного качества (табл. 1) маркируются буквами Ст , что означает сталь. После Ст следует условный номер марки от 0 до 6, который отображает химический состав стали. Степень раскисления стали указывается буквами кп, пс, сп , которые означают, соответственно, кипящую (раскисленную марганцем), полуспокойную (раскисленную марганцем и кремнием), спокойную (раскисленную марганцем, кремнием и алюминием). Массовая доля серы в сталях всех марок £ 0,050%, фосфора – £ 0,040%, в Ст0 серы – £0,060%, фосфора – £ 0,070%.

Достаточно часто встречается еще маркировка прошлых лет, в соответствии с которой все стали обыкновенного качества подразделяются на три группы.

Группа А – маркируются Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6.

Группа Б – маркируются буквами М, К, Б (что указывает на способ производства – мартеновский, конверторный, бессемеровский), а затем Ст0, Ст1, Ст2, Ст3, Ст4, Ст5,Ст6.

Группа В – маркируются ВСт1, ВСт2, ВСт3, ВСт4, ВСт5, ВСт6.

Стали группы А поставляются с гарантированными механическими свойствами. Они не поддаются горячей обработке. Чем больше номер, тем выше прочность, но ниже пластичность стали.

Стали группы Б поставляются с гарантированным химическим составом и у потребителя могут подвергаться горячей обработке (например, ковке и термической обработке).

Стали группы В поставляются с гарантированными механическими свойствами и химическим составом (применяются для сварных конструкций).

Таблица 1 - Химический состав углеродистых сталей обыкновенного

качества

Стали всех групп с номерами марок 1, 2, 3, 4 по степени раскисления изготавливают кипящими, полуспокойными, спокойными, а стали с номерами 5 и 6 – полуспокойными и спокойными.

Углеродистые качественные стали отличаются от сталей обыкновенного качества меньшим содержанием серы (не более 0,04%) и фосфора (не более 0,035%), а также меньшим количеством неметаллических включений. Химический состав этих сталей ограничивается более узким диапазоном. Качественные углеродистые стали маркируются словом сталь и последующим двузначным числом, которое показывает среднее содержание углерода в стали в сотых долях процента, например, 08, 10, 15 и т.д. (табл. 2).

Таблица 2 - Состав и механические свойства качественных углеродистых сталей

Марка стали С, % Mn,% Si, % Cr, % s 0,2 , МПа s в, МПа δ,% y, % KCU, Дж/см 2
0,05-0,12 0,35-0,65 0,17-0,37 0,10 -
0,07-0,14 0,35-0,65 0,17-0,37 0,15 -
0,12-0,19 0,35-0,65 0,17-0,37 0,25 -
0,17-0,24 0,35-0,65 0,17-0,37 0,25 -
0,22-0,30 0,50-0,80 0,17-0,37 0,25
0,27-0,35 0,50-0,80 0,17-0,37 0,5
0,32-0,40 0,50-0,80 0,17-0,37 0,25
0,37-0,45 0,50-0,80 0,17-0,37 0,25
0,42-0,50 0,50-0,80 0,17-0,37 0,25
0,47-0,55 0,50-0,80 0,17-0,37 0,25
0,52-0,60 0,50-0,80 0,17-0,37 0,25 -
0,57-0,65 0,50-0,80 0,17-0,37 0,25 -

При обозначении кипящей или полуспокойной стали в конце марки указывается степень раскисления буквами кп, пс . В случае спокойной стали степень раскисления не указывается. К качественным углеродистым сталям относятся также стали с повышенным содержанием марганца (0,7 - 1,0%). Такие стали имеют в конце марки букву Г .

Для изделий ответственного назначения применяют высококачественные стали с более низким содержанием серы (до 0,025%) и фосфора (до 0,025%). При обозначении высококачественных сталей в конце марки добавляется буква А.

Качественные углеродистые стали подразделяются на низко-, средне- и высокоуглеродистые в зависимости от содержания углерода. К низкоуглеродистым сталям высокой пластичности и малой прочности относятся стали 08, 08кп, 10, 10кп, 15, 15Г..., 25Г, которые используются для изготовления малонагруженных деталей (кулачковых валов, осей, втулок). Термическая обработка (закалка с отпуском, цементация) значительно повышает прочность и вязкость изделий из этих материалов, что позволяет создавать более легкие конструкции и экономить металл. Среднеуглеродистые стали (с содержанием углерода 0,3...0,55%) в зависимости от требуемых механических свойств используются после нормализации, закалки с высокотемпературным отпуском, закалки ТВЧ и низкотемпературного отпуска. Из этих сталей изготовляют валы, шестерни, шатуны, шпиндели и т.д.

Высокоуглеродистые стали содержат углерода от 0,6 до 0,85% и характеризуются высокими прочностными и упругими свойствами, повышенной износостойкостью. После закалки и отпуска или закалки с нагревом ТВЧ детали из этих сталей могут работать в условиях трения при наличии высоких статических и вибрационных нагрузок. Из этих сталей изготавливают канатную проволоку, а также пружинную проволоку после патентования.

Углеродистые стали, которые содержат 0,7...1,3%С, используются для изготовления ударного и режущего инструмента. Их маркируют У7...У13 , где У обозначает углеродистую сталь, а цифра – содержание углерода в десятых долях процента.

К положительным качествам углеродистых сталей относится их достаточно высокий комплекс механических свойств, который обеспечивается проведением термической обработки. Углеродистые стали имеют хорошие технологические свойства. Они недефицитны и дешевы.

Основным недостатком углеродистых сталей является их низкая прокаливаемость (до 15 мм).

Чугуны

1.4.3.1 Общие сведения

Чугунами называют сплавы железа с углеродом, количество которого превышает 2,14%. Значительная часть выплавляемого чугуна переплавляется в сталь, однако не менее чем 20% выплавляемого чугуна используют для изготовления литых деталей.

Чугуны отличаются высокими литейными свойствами и являются одними из основных современных литейных материалов. Около 75% всех отливок изготавливают из чугуна. Более низкая по сравнению со сталями температура плавления и завершение кристаллизации при постоянной температуре (образование эвтектики) обеспечивают более высокие литейные характеристики: жидкотекучесть и заполняемость формы, усадку и меньшую склонность к образованию усадочных трещин.

Из-за низкой пластичности чугуны не подвергаются обработке давлением.

В зависимости от химического состава и условий кристаллизации углерод в чугунах может находиться в химически связанном состоянии в виде цементита или в свободном состоянии в виде графита. В соответствии с этим различают белые чугуны (углерод находится в виде цементита) и серые (углерод находится в виде графитных включений).

В белых чугунах фазовые превращения происходят в соответствии с диаграммой Fe-Fe 3 C. В зависимости от содержания углерода они подразделяются на доэвтектические (2,14…4,3%С), эвтектические (4,3%С) и заэвтектические (4,3…6,67%С).

В доэвтектических чугунах структурными составляющими при комнатной температуре являются перлит, ледебурит и цементит; в эвтектических – ледебурит; в заэвтектических – ледебурит и цементит.

Белые чугуны имеют высокую твердость (450…550НВ и выше), обусловленную наличием в них большого количества цементита. Одновременно с высокой твердостью для белых чугунов характерна высокая хрупкость, что исключает их использование для изготовления деталей машин. Находят применение отливки из белых чугунов, которые служат для получения деталей из ковкого чугуна путем проведения графитизирующего отжига. Также находят применение отливки с поверхностным слоем (12…30 мм) из белого чугуна и сердцевиной из серого чугуна. Наличие «отбеленного» поверхностного слоя обеспечивает высокую изностойкость такой отливки.

Промышленное значение имеют серые чугуны, в которых углерод находится в виде графитных включений, и поэтому важное значение приобретают условия их образования, т. е. процесс графитизации.

Графит содержит 100% углерода, а концентрация углерода в цементите составляет всего 6,67%. Кристаллические структуры аустенита и графита существенно различаются, в то время, как кристаллические структуры аустенита и цементита более подобны по своему строению. Поэтому образование цементита из жидкой фазы и из аустенита должно протекать легче, чем графита, поскольку работа образования зародыша и необходимые для этого диффузионные процессы не столь значительны.

Однако смесь феррит + графит или аустенит + графит обладает меньшой свободной энергией, чем смесь феррит + цементит или аустенит + цементит , следовательно, термодинамические факторы способствуют образованию не цементита, а графита.

В силу перечисленных обстоятельств при быстром охлаждении и затруднении диффузионных процессов происходит образование цементита, а при медленном охлаждении определяющим является стремление к минимизации свободной энергии, что приводит к образованию графита.

Серые чугуны различаются по форме графитных включений. Графит, который образуется в чугунах в процессе кристаллизации и последующего охлаждения имеет пластинчатую форму, а чугуны с таким графитом называются собственно серыми .

Образование графита вследствие распада цементита имеет место не только при кристаллизации и охлаждении, но и при нагреве белого чугуна до высоких температур. Это явление используется при производстве так называемого ковкого чугуна. В этом случае центры графитизации растут более или менее равномерно во все стороны и образуются графитные включения хлопьевидной формы. Чугун с таким графитом называют ковким чугуном.

Чугун с шаровидной формой графита, которую получают вследствие модификации магнием и церием, называют высокопрочным чугуном.

Чугуны, так же как и стали, являются многокомпонентными сплавами, в состав которых входят Fe, C, Si, Mn, P и S.

Углерод оказывает определяющее значение на качество чугунов, изменяя литейные свойства и количество графитных включений. Чем выше его концентрация, тем больше выделений графита и ниже механические свойства чугуна, поэтому содержание углерода в промышленных чугунах не превышает 3,8%. Нижний предел содержания углерода составляет 2,4% и лимитируется необходимостью обеспечения достаточных литейных свойств.

Кремний обладает сильным графитизирующим действием, он способствует выделению графита в процессе затвердевания и разложению уже образовавшегося цементита. Содержание кремния в чугунах колеблется от 0,3 до 5%.

Марганец затрудняет протекание процессов графитизации и незначительно улучшает механические свойства чугунов. Количество марганца в чугунах может изменяться в пределах 0,5…1%.

Сера по своей отбеливающей способности в 5 - 6 раз превосходит марганец. Кроме этого, сера снижает жидкотекучесть, увеличивает усадку и повышает склонность к образованию трещин. Поэтому сера является вредной примесью и её содержание в чугунах не превышает 0,15%.

Фосфор практически не влияет на графитизацию. Его предельная растворимость в феррите составляет 0,3%. При большем содержании фосфор образует с железом и углеродом тройную фосфидную эвтектику с температурой плавления 950 о С, что увеличивает жидкотекучесть чугунов. Однако эта эвтектика имеет высокую твердость и хрупкость, поэтому повышенное содержание фосфора в отливках до 0,7% допускается лишь при необходимости обеспечения высокой изностойкости. Для художественного литья используются чугуны с содержанием фосфора до 1%.

Из легирующих элементов степень графитизации увеличивают никель и медь, а хром затрудняет процесс образования графита.

Графитные включения влияют на механические свойства отливок, поскольку могут рассматриваться как пустоты соответствующей формы, возле которых концентрируются напряжения. Величина этих напряжений тем больше, чем острее дефект, поэтому в наибольшей мере разупрочняется металл при наличии графитных включений пластинчатой формы, менее опасной является хлопьевидная форма графита, а наиболее приемлемой – шаровидная форма графита. Наибольшее влияние графитные включения оказывают на сопротивление материалов разрушению при жестких способах нагрузки (ударных и растягивающих) и практически не влияют при действии сжимающих нагрузок. Наименьшую пластичность имеют чугуны с пластинчатым графитом (δ = 0,2...0,5%), промежуточную (δ = 5...10%) – с хлопьевидным графитом и наибольшую – с шаровидным графитом (δ £ 15%).

По структуре металлической основы серые, ковкие и высокопрочные чугуны подразделяются на ферритные, ферритно-перлитные и перлитные.

Металлическая основа в чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру. Присутствие в структуре феррита, не увеличивая пластичность и вязкость чугуна, снижает его прочность и износостойкость. Наименьшей прочностью обладает серый ферритный чугун.

Как конструкционный материал чугуны обладают следующими положительными свойствами. Наличие графита улучшает обработку резанием, поскольку стружка ломается на графитных включениях. По сравнению со сталью чугуны имеют лучшие антифрикционные свойства, в силу того, что графитные включения сами являются смазкой. Чугун прекрасно гасит вибрации и имеет повышенную циклическую вязкость благодаря микропустотам, которые заполнены графитом. Детали из чугуна не столь чувствительны к внешним концентраторам напряжений (выточкам, отверстиям и т. п.) по сравнению со стальными деталями. Чугуны дешевле сталей из-за более простой технологии производства.

По химическому составу различают углеродистые и легированные стали

Углеродистые стали - это сплавы железа с углеродом, содержащие до 2,14 % углерода (С) при малом содержании других элементов. Они обладают высокой пластичностью и хорошо деформируются. Углерод сильно влияет на свойства стали даже при незначительном изменении его содержания. Углеродистые стали можно классифицировать по нескольким параметрам:

  • По качеству
  • По способу раскисления

По качеству

Стали обыкновенного качества

Изготавливаются по ГОСТ 380-71. Обозначают буквами Ст и условными номерами от 0 до 6, например: Ст 0, Ст 1, ..., Ст 6. Степень раскисления обозначают буквами сп (спокойная сталь), пс (полу-спокойная), кп (кипящая), которые ставят в конце обозначения марки стали.

В зависимости от назначения различают три группы сталей обыкновенного качества: А, Б и В. В марках указывают только группы Б и В, группу А не указывают.

  • Группа А поставляются только по механическим свой-ствам, химический состав сталей этой группы не регламентируется, он только указывается в сертификатах завода-изготовителя. Стали этой группы обычно используются в изделиях в состоянии поставки без обработки давлением и сварки. Чем больше цифра условного номера стали, тем выше ее прочность и меньше пла-стичность.
  • Группа Б поставляется только с гарантируемым химическим составом. Чем больше цифра условного номера стали, тем выше содержание углерода. Эти стали в дальнейшем могут подвергаться деформации (ковке, штамповке и др.), а в отдельных случаях и термической обработке. При этом их первоначальная структура и механические свойства не сохраняются. Знание химического состава стали позволяет определить температурный режим горячей обработки давлением и термообработки.
  • Группа В могут подвергаться сварке. Их поставляют с гарантированным химическим составом и гарантированными свойствами. Стали этой группы маркируются буквой В и цифрой, например - В СтЗпс. Эта сталь имеет механические свойства, соответствующие ее номеру по группе А, а химический состав - номеру по группе Б с коррекцией по способу раскисления.

Качественные углеродистые стали

Этот класс углеродистых сталей изготавливается по ГОСТ 1050-74. Качественные стали поставляют и по химическому составу, и по механическим свойствам.. К ним предъявляются более жесткие требования по содержанию вредных примесей (серы не более 0,04 %, фосфора не более 0,035 %), неметаллических вклю-чений и газов, макро- и микроструктуры.

Качественные углеро-дистые стали маркируют двузначными цифрами 08, 10, 15, ..., 85, указывающими среднее содержание углерода в сотых долях про-цента с указанием степени раскисленности (кп, пс).

Качественные стали делят на две группы: с обычным содержанием марганца (до 0,8 %) и с повышенным содержанием (до 1,2 %). При обозна-чении последних в конце марки ставится буква Г, например 60 Г. Марганец повышает прокаливаемость и прочностные свойства, но несколько снижает пластичность и вязкость стали.

При обозначении кипящей или полуспокойной стали в конце марки указывается степень раскисленности: кп, пс. В случае спокойной стали степень раскисленности не указывается.

По содержанию углерода качественные углеродистые стали подразделяются:

  • низкоуглеродистые (до 0,25 % С),
  • среднеуглеродистые (0,3-0,55 % С)
  • высокоуглеродистые (0,6-0,85 % С).

Для изделий ответственного назначения применяют высоко-качественные стали с еще более низким содержанием серы и фос-фора. Низкое содержание вредных примесей в высококачествен-ных сталях дополнительно удорожает и усложняет их производ-ство. Поэтому обычно высококачественными сталями бывают не углеродистые, а легированные стали. При обозначении высоко-качественных сталей в конце марки добавляется буква А, напри-мер сталь У10А.

Углеродистые стали, содержащие 0,7-1,3 % С, используют для изготовления ударного и режущего инструмента. Их марки-руют У7, У13, где У означает углеродистую сталь, а цифра - содержание углерода в десятых долях процента.

По способу раскисления

Кипящие
Содержат до 0,05% кремния, раскисляются марганцем. Имеют резко выраженную химическую неоднородность в слитке. Их преимущества - высокий выход годного продукта (более 95%), хорошая способность к штамповке в холодном состоянии. Недостатки -повышенный порог хладноломкости и невозможность широкого использования для территорий с холодным климатом.

Полуспокойные
Содержат 0,05- 0,15% кремния, раскисляются марганцем и алюминием, выход годного продукта -90-95%.

Спокойные
Содержит 0,15-0,35% кремния, раскисляется кремнием, марганцем и алюминием. Выход годного - около 85%, однако, металл имеет более плотную структуры и однородный химический состав.