3. Задача

Список литературы


1. Перспективы использования геотермальных источников энергии


Геотермальная энергия - это энергия внутренних областей Земли.

Еще 150 лет тому назад на нашей планете использовались исключительно возобновляемые и экологически безопасные источники энергии: водные потоки рек и морских приливов - для вращения водяных колес, ветер - для приведение в действие мельниц и парусов, дрова, торф, отходы сельского хозяйства - для отопления. Однако с конца XIX века все более и более растущие темпы бурного промышленного развития вызвали необходимость сверхинтенсивного освоения и развития сначала топливной, а затем и атомной энергетики. Это привело к стремительному истощению углеродных ископаемых и к все более возрастающей опасности радиоактивного заражения и парникового эффекта земной атмосферы. Поэтому на пороге нынешнего века пришлось вновь обратиться к безопасным и возобновляемым энергетическим источникам: ветровой, солнечной, геотермальной, приливной энергии, энергии биомасс растительного и животного мира и на их основе создавать и успешно эксплуатировать новые нетрадиционные энергоустановки: приливные электростанции (ПЭС), ветровые энергоустановки (ВЭУ), геотермальные (ГеоТЭС) и солнечные (СЭС) электростанции, волновые энергоустановки (ВлЭУ), морские электростанции на месторождениях газа (КЭС).

В то время, как достигнутые успехи в создании ветровых, солнечных и ряда других типов нетрадиционных энергоустановок широко освещаются в журнальных публикациях, геотермальным энергоустановкам и, в частности, геотермальным электростанциям не уделяется того внимания, которого они по праву заслуживают. А между тем перспективы использования энергии тепла Земли поистине безграничны, поскольку под поверхностью нашей планеты, являющейся, образно говоря, гигантским естественным энергетическим котлом, сосредоточены огромнейшие резервы тепла и энергии, основными источниками которых являются происходящие в земной коре и мантии радиоактивные превращения, вызываемые распадом радиоактивных изотопов. Энергия этих источников столь велика, что она ежегодно на несколько сантиметров сдвигает литосферные пласты Земли, вызывает дрейф материков, землетрясения и извержения вулканов.

Современная востребованность геотермальной энергии как одного из видов возобновляемой энергии обусловлена: истощением запасов органического топлива и зависимостью большинства развитых стран от его импорта (в основном импорта нефти и газа), а также с существенным отрицательным влиянием топливной и ядерной энергетики на среду обитания человека и на дикую природу. Все же, применяя геотермальную энергию, следует в полной мере учитывать ее достоинства и недостатки.

Главным достоинством геотермальной энергии является возможность ее использования в виде геотермальной воды или смеси воды и пара (в зависимости от их температуры) для нужд горячего водо - и теплоснабжения, для выработки электроэнергии либо одновременно для всех трех целей, ее практическая неиссякаемость, полная независимость от условий окружающей среды, времени суток и года. Тем самым использование геотермальной энергии (наряду с использованием других экологически чистых возобновляемых источников энергии) может внести существенный вклад в решение следующих неотложных проблем:

·Обеспечение устойчивого тепло - и электроснабжения населения в тех зонах нашей планеты, где централизованное энергоснабжение отсутствует или обходится слишком дорого (например, в России на Камчатке, в районах Крайнего Севера и т.п.).

·Обеспечение гарантированного минимума энергоснабжения населения в зонах неустойчивого централизованного энергоснабжения из-за дефицита электроэнергии в энергосистемах, предотвращение ущерба от аварийных и ограничительных отключений и т.п.

·Снижение вредных выбросов от энергоустановок в отдельных регионах со сложной экологической обстановкой.

При этом в вулканических регионах планеты высокотемпературное тепло, нагревающее геотермальную воду до значений температур, превышающих 140 - 150°С, экономически наиболее выгодно использовать для выработки электроэнергии. Подземные геотермальные воды со значениями температур, не превышающими 100°С, как правило, экономически выгодно использовать для нужд теплоснабжения, горячего водоснабжения и для других целей


Таб. 1.

Значение температуры геотермальной воды,°СОбласть применения геотермальной водыБолее 140Выработка электроэнергииМенее 100Системы отопления зданий и сооруженийОколо 60 Системы горячего водоснабженияМенее 60Системы геотермального теплоснабжения теплиц, геотермальные холодильные установки и т.п.

По мере развития и совершенствования геотермальных технологий пересматриваются в сторону использования для производства электроэнергии геотермальных вод с все более низкими температурами. Так, разработанные в настоящее время комбинированные схемы использования геотермальных источников позволяют использовать для производства электроэнергии теплоносители с начальными температурами 70 - 80°С, что значительно ниже рекомендуемых в таблице температур (150°С и выше). В частности, в Санкт-Петербургском политехническом институте созданы гидропаровые турбины, использование которых на ГеоТЭС позволяет увеличивать полезную мощность двухконтурных систем (второй контур - водный пар) в диапазоне температур 20 - 200°С в среднем на 22 %.

Значительно повышается эффективность применения термальных вод при их комплексном использовании. При этом в разных технологических процессах можно достичь наиболее полной реализации теплового потенциала воды, в том числе и остаточного, а также получить содержащиеся в термальной воде ценные компоненты (йод, бром, литий, цезий, кухонная соль, глауберова соль, борная кислота и многие другие) для их промышленного использования.

Основной недостаток геотермальной энергии - необходимость обратной закачки отработанной воды в подземный водоносный горизонт . А так же применение геотермальных вод не может рассматриваться как экологически чистое потому, что пар часто сопровождается газообразными выбросами, включая сероводород и радон - оба считаются опасными. На геотермальных станциях пар, вращающий турбину, должен быть конденсирован, что требует источника охлаждающей воды, точно так же как этого требуют электростанции на угле или ядерном топливе. В результате сброса как охлаждающей, так и конденсационной горячей воды возможно тепловое загрязнение среды. Кроме того, там, где смесь воды и пара извлекается из земли для электростанций, работающих на влажном паре, и там, где горячая вода извлекается для станций с бинарным циклом, воду необходимо удалять. Эта вода может быть необычно соленой (до 20% соли), и тогда потребуется перекачка ее в океан или нагнетание в землю. Сброс такой воды в реки или озера мог бы уничтожить в них пресноводные формы жизни. В геотермальных водах нередко содержатся также значительные количества сероводорода - дурно пахнущего газа, опасного в больших концентрациях.

Однако в связи с внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются. К тому же следует иметь ввиду, что геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80ºС, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии. В связи с эти ожидается, что в странах со значительным геотермальным потенциалом и первую очередь в США мощность ГеоТЭС в самое ближайшее время удвоится.

Еще более впечатляет появившаяся несколько лет тому назад новая, разработанная австралийской компанией Geodynamics Ltd., поистине революционная технология строительства ГеоТЭС - так называемая технология Hot-Dry-Rock, существенно повышающая эффективность преобразования энергии геотермальных вод в электроэнергию. Суть этой технологии заключается в следующем .

До самого последнего времени в термоэнергетике незыблемым считался главный принцип работы всех геотермальных станций, заключающийся в использовании естественного выхода пара из подземных резервуаров и источников. Австралийцы отступили от этого принципа и решили сами создать подходящий "гейзер". Для создания такого гейзера австралийские геофизики отыскали в пустыне на юго-востоке Австралии точку, где тектоника и изолированность скальных пород создают аномалию, которая круглогодично поддерживает в округе очень высокую температуру. По оценкам австралийских геологов, залегающие на глубине 4,5 км гранитные породы разогреваются до 270°С, и поэтому если на такую глубину через скважину закачать под большим давлением воду, то она, повсеместно проникая в трещины горячего гранита, будет их расширять, одновременно нагреваясь, а затем по другой пробуренной скважине будет подниматься на поверхность. После этого нагретую воду можно будет без особого труда собирать в теплообменнике, а полученную от нее энергию использовать для испарения другой жидкости с более низкой температурой кипения, пар которой, в свою очередь, и приведет в действие паровые турбины. Вода, отдавшая геотермальное тепло, вновь будет направлена через скважину на глубину, и цикл таким образом повторится. Принципиальная схема получения электроэнергии по технологии, предложенной австралийской компанией Geodynamics Ltd., приведена на рис.1.


Рис. 1.


Безусловно, реализовать эту технологию можно не в любом месте, а только там, где залегающий на глубине гранит нагревается до температуры не менее 250 - 270°С. При применении такой технологии ключевую роль играет температура, понижение которой на 50°С по оценкам ученых вдвое повысит стоимость электроэнергии.

Для подтверждения прогнозов специалисты компании Geodynamics Ltd. Уже пробурили две скважины глубиной по 4,5 км каждая и получили доказательство того, что на этой глубине температура достигает искомых 270 - 300°С. В настоящее время проводятся работы по оценке общих запасов геотермальной энергии в этой аномальной точке юга Австралии. По предварительным расчетам в этой аномальной точке можно получать электроэнергию мощностью более 1 ГВт, причем стоимость этой энергии будет вдвое дешевле стоимости ветровой энергии и в 8 - 10 раз дешевле солнечной.

геотермальная энергия экологический фонд

Мировой потенциал геотермальной энергии и перспективы его использования

Группа экспертов из Всемирной ассоциации по вопросам геотермальной энергии, которая произвела оценку запасов низко - и высокотемпературной геотермальной энергии для каждого континента, получила следующие данные по потенциалу различных типов геотермальных источников нашей планеты (табл.2).


Наименование континентаТип геотермального источника: высокотемпературный, используемый для производства электроэнергии, ТДж/годнизкотемпературный, используемый в виде теплоты, ТДж/год (нижняя граница) традиционные технологиитрадиционные и бинарные технологииЕвропа18303700>370Азия29705900>320Африка12202400>240Северная Америка13302700>120Латинская Америка28005600>240Океания10502100>110Мировой потенциал1120022400>1400

Как видно из таблицы, потенциал геотермальных источников энергии просто таки колоссален. Однако используется он крайне незначительно, но в настоящее время геотермальная электроэнергетика развивается ускоренными темпами, не в последнюю очередь из-за галопирующего увеличения стоимости нефти и газа. Этому развитию во многом способствуют принятые во многих странах мира правительственные программы, поддерживающие это направление развития геотермальной энергетики.

Характеризуя развитие мировой геотермальной электроэнергетики как неотъемлемой составной части возобновляемой энергетики на более отдаленную перспективу, отметим следующее. Согласно прогнозным расчетам в 2030 году ожидается некоторое (до 12,5 % по сравнению с 13,8 % в 2000 году) снижение доли возобновляемых источников энергии в общемировом объеме производства энергии. При этом энергия солнца, ветра и геотермальных вод будет развиваться ускоренными темпами, ежегодно увеличиваясь в среднем на 4,1 %, однако вследствие "низкого" старта их доля в структуре возобновляемых источников и в 2030 году будет оставаться наименьшей.


2. Экологические фонды, их назначение, виды


Вопросы, которые включает в себя охрана окружающей среды , являются довольно актуальными и значимыми в наши дни. Одним из них является вопрос об экологических фондах. Именно от него напрямую зависит эффективность всего процесса, так как сегодня без определенных вложений добиться чего-то бывает очень непросто.

Экологические фонды представляют собой единую систему внебюджетных государственных средств, которая помимо непосредственного экологического фонда должна включать в себя областные, краевые, местные, а также республиканские фонды. Экологические фонда, как правило, создаются с целью решения самых важных и неотложных природоохранительных задач. Кроме того они необходимы при компенсации причиненного вреда, а также в случае восстановления потерь в окружающей природной среде.

Также не менее важным вопросом в данном случае является то, откуда берутся данные фонды, которые играют довольно важную роль в таком процессе как охрана окружающей среды . Чаще всего экологические фонды образуются из средств, которые поступают от организаций, учреждений, граждан и предприятий, а также от юридических граждан и лиц. Как правило, в качестве них выступают всевозможные платы за сбросы отходов, выбросы вредных веществ, размещение отходов, а также прочие виды загрязнений.

Помимо этого экологические фонды формируются за счет средств реализации конфискованных инструментов и орудий рыболовства и охоты, сумм, которые получаются по искам о возмещении штрафов и вреда за ухудшение экологического состояния, инвалютных поступлений от иностранных граждан и лиц, а также от полученных дивидендов по банковским депозитам, вкладам в качестве процентов, и от долевого использования фондовых средств в деятельности данных лиц и их предприятий.

Как правило, все вышеперечисленные средства должны быть зачислены на специальные счета банков в определенном соотношении. Так, например, на реализацию природоохранных мероприятий , которые имеют федеральное значение, выделяют десять процентов средств, на реализацию мероприятий республиканского и областного значения - тридцать процентов. Остальная сумма должна пойти на реализацию природоохранных мероприятий, которые имеют местное значение.


3. Задача


Определить полный годовой экономический ущерб от загрязнения ТЭС, производительностью 298 т/сутки угля при выбросах: SO2 - 18 кг/т; летучая зола - 16 кг/сутки; СО2 - 1,16 т/т.

Эффект очистки принять 68%. Удельный ущерб от загрязнений на единицу выбросов составляет: у SO2=98 руб/т; у СО2=186 руб/т; уз=76 руб/т.

Дано:

Q=298 т/сутки;

gл. з. =16 кг/сутки;SO2=18 кг/т;

gCO2=1,16т/т

Решение:


mл. з. =0,016*298*0,68=3,24 т/сутки

mSO2=0.018*298*0,68=3.65 т/сутки

mCO2=1.16*298*0,68=235.06 т/сутки

Пл. з. =360*3,24*76=88646,4 руб/год

ПSO2=360*3.65*98=128772 руб/год

ПСО2=360*235,06*186=15739617 руб/год

Пполн=88646,4+128772+15739617=15 957 035,4 руб/год


Ответ: полный годовой экономический ущерб от загрязнений ТЭС составляет 15 957 035,4 рублей в год.

Список литературы


1.

Http://ustoj.com/Energy_5. htm

.

Http://dic. academic.ru/dic. nsf/dic_economic_law/18098/%D0%AD%D0%9A%D0%9E%D0%9B%D0%9E%D0%93%D0%98%D0%A7%D0%95%D0%A1%D0%9A%D0%98%D0%95


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Недостатки геотермальных электростанций

  • Найти подходящее место для строительства геотермальной электростанции и получить разрешение местных властей и согласие жителей на ее возведение может быть проблематичным.
  • Иногда действующая геотермальная электростанция может остановиться в результате естественных изменений в земной коре. Кроме того, причиной ее остановки может стать плохой выбор места или чрезмерная закачка воды в породу через нагнетательную скважину.
  • Через эксплуатационную скважину могут выделяться горючие или токсичные газы или минералы, содержащиеся в породах земной коры. Избавиться от них достаточно сложно. Правда, в некоторых случаях их можно сифонировать (собрать) и переработать в горючее (нефть-сырец или природный газ, например).

Вопрос

Можно ли построить небольшую геотермальную электростанцию, способную обеспечить электричеством дом или небольшой поселок?

Ответ

Это можно осуществить в районах, где не нужно бурить глубокие дорогие скважины. Наиболее показательным примером является, пожалуй, Исландия, которая, по сути, находится на вершине гигантского вулкана. На территории США среди таких районов можно назвать территории вокруг Йеллоустоуна, Термополиса и Саратоги в штате Вайоминг и вокруг города Хот Спрингс в Южной Дакоте (В России наиболее известным регионом с высоким потенциалом для геотермальной энергетики считается Камчатка.).

Геотермальные электростанции (ГеоЭС) - разновидность альтернативной энергетики. ГеоЭС получают электрическую энергию за счёт геотермальных источников недр Земли - гейзеров, открытых и подземных горячих источников воды или метана, теплых сухих пород, магмы. Поскольку геологическая активность происходит на планете регулярно, геотермальные источники можно условно считать неисчерпаемыми (возобновляемыми). По подсчётам ученых тепловая энергия Земли составляет 42 триллиона Ватт, 2% из которых (840 миллиардов) содержится в земной коре и доступна для добычи, однако и этой цифры достаточно, чтобы обеспечить население Земли неиссякаемой энергией на долгие годы.

Регионы с геотермальной активностью имеются во многих частях планеты, и идеальными для построения станций считаются районы с высокой геологической активностью (вулканической, сейсмической). Наиболее активное развитие отрасли происходит в местах скопления горячих гейзеров, а также в областях вокруг краёв литосферных плит в силу наименьшей толщины земной коры.

Для получения тепла из закрытых подземных источников используется бурение скважин. При углублении скважины температура повышается примерно на 1 градус каждые 36 метров, но есть и более высокие показатели. Полученное тепло доставляется на поверхность станции в виде горячей воды или пара, они могут применяться как для прямой подачи на отопительные системы домов и помещений, так и для последующего преобразования в электроэнергию на станции.

В зависимости от состояния среды (вода, пар) используется три способа получения электроэнергии - прямой, непрямой и смешанный. При прямом используется сухой пар, воздействующий на турбину генератора напрямую. При непрямом используется (наиболее популярен в настоящее время) очищенный и нагретый водяной пар, получаемый испарением воды, закачиваемой из подземных источников температурой до 190 градусов. Как видно из представленного рисунка - перегретый пар по добывающим скважинам поднимается к теплообменнику. В нем происходит передача тепловой энергии в закрытый контур паровой турбины. Полученный от закипания жидкости пар вращает турбину, после чего снова конденсируется в теплообменнике, что образует замкнутую и практически безвредную для атмосферы систему. Паровая турбина соединена с электрогенератором, с которого и получают электроэнергию. При смешанном способе применяют промежуточные легко-вскипаемые жидкости (фреон и др.), на которые воздействуют кипящей водой из источников.

Преимущества геотермальных электростанций:

1) Станции не требуют внешнего топлива для работы;

2) Практически неисчерпаемые запасы энергии (если соблюдать необходимые условия);

3) Возможность автоматизированной и автономной работы за счёт использования собственно-выработанного электричества;

4) Относительная дешевизна обслуживания станций;

5) Станции можно использовать для опреснения воды при расположении их на побережье океана или моря.

Геотермальные электростанции - недостатки:

1) Выбор места установки станции зачастую затруднён политическими и социальными аспектами;

2) Проектирование и строительство ГеоЭС может потребовать очень больших вложений;

3) Загрязнение атмосферы периодическими выбросами через скважину вредных веществ, содержащихся в коре (современные технологии позволяют частично преобразовывать эти выбросы в топливо), однако оно значительно ниже, чем при производстве электроэнергии из ископаемых источников;

4) Нестабильность естественных геологических процессов и, как следствие, периодическая остановка работы станций.

Первая геотермальная электростанция

Первые эксперименты с добычей энергии из геотермальных источников относятся к началу 20 века (1904 год, Италия, где спустя небольшое время была также построена первая полноценная геотермальная электростанция). В настоящее время, с учётом быстрого роста потребления электричества и быстрого иссякания запасов традиционного энергетического сырья, это одна из наиболее перспективных отраслей энергетики.

Крупнейшие геотермальные электростанции

Лидерами получения геотермальной энергии сейчас являются США и Филиппины, где построены самые крупные ГеоЭС, производящие более 300 МВт энергии каждая, что достаточно для энергоснабжения крупных городов.

Геотермальные электростанции в России

В России отрасль развита меньше, но и здесь идёт активное развитие. Самыми перспективными регионами страны являются Курильские острова и Камчатка. Крупнейшая геотермальная электростанция страны - Мутновская ГеоЭС на юго-востоке Камчатки, производящая до 50 МВт энергии (в перспективе - до 80 МВт). Также следует отметить Паужетскую (первая, построенная в России), Океанскую и Менделеевскую ГеоЭС.

С давних пор люди, проживавшие на территории , купались в местных горячих источниках с лечебной и профилактической целью. Если раньше это были обычные водоемы, то сейчас вокруг них выросли комфортабельные , и бани. Горячие источники Южной Кореи особенно привлекательны зимой, когда появляется возможность погреться в теплой воде, подышать чистым горным воздухом и насладиться великолепными пейзажами.

Особенности горячих источников Южной Кореи

Жители этой страны с особым трепетом относятся к приему горячих ванн. Это позволяет ускорить обмен веществ, избавиться от усталости и мышечной боли. Особой популярностью в Южной Корее пользуются горячие источники, где можно отлично провести время с семьей, друзьями и близкими. Рядом со многими источниками работают спа-центры, куда туристы и корейцы приезжают ради специальных процедур. Здесь также есть большой выбор санаторно-курортных комплексов, построенных в непосредственной близости от водоемов. По такому же принципу работают детские аквапарки, в которых можно сочетать купание в горячих ваннах и развлечения на водных аттракционах.

Главным достоинством горячих источников Южной Кореи являются целебные свойства минеральной воды. С давних пор с ее помощью корейцы лечили невралгические и гинекологические заболевания, кожные инфекции и аллергию. Сейчас же это отличный способ снять накопившийся стресс и отдохнуть от работы. Именно поэтому многие горожане и туристы с наступлением выходных и праздников устремляются в сторону популярных курортов, чтобы расслабиться и насладиться красотой местных пейзажей.

На сегодняшний день наиболее известными горячими источниками Южной Кореи являются:

  • Ансон;
  • Того;
  • Суанбо;
  • Пугок;
  • Юсон;
  • Чхоксан;
  • Тоннэ;
  • Осэк;
  • Онян;
  • Пэгам Ончхон.

Еще есть спа-курорт «Оушен Касл», расположенный на побережье Желтого моря. Здесь помимо горячих ванн, можно купаться в бассейне с гидромассажным оборудованием и наслаждаться видами морского берега. Любители искусства предпочитают посещать другой курорт с горячими источниками Южной Кореи – «Спа Грин Лэнд». Он известен не только своей целебной водой, но и большой коллекцией картин и скульптур.


Горячие источники в окрестностях Сеула

Главными столичными являются старинные , современные и многочисленные развлекательные центры. Но и помимо них, есть что предложить туристам:

  1. . Рядом со столицей Южной Кореи расположены горячие источники Ичхон. Они наполнены простой родниковой водой, не имеющей цвета, запаха и вкуса. Зато в ней содержится большое количество углекислого кальция и других минералов.
  2. Спа Плас. Здесь же в окрестностях Сеула находится аквапарк Спа Плас, разбитый около других источников природной минеральной воды. Посетители комплекса могут посетить традиционные сауны или искупаться в горячих ваннах на открытом воздухе.
  3. Онъян. Отдыхая в столице, на выходных можно отправиться к самым древним горячим источникам Южной Кореи – Онъян. Они начали использоваться примерно 600 лет назад. Существуют документы, в которых указано, что в местных водах купался сам король Сечжон, правивший в 1418-1450 годах. Местная инфраструктура включает 5 комфортабельных отелей, 120 бюджетных мотелей, огромное количество бассейнов, современные и традиционные рестораны. Температура воды в источниках Онъян составляет +57°C. Она богата щелочами и другими полезными для организма элементами.
  4. Ансон. Примерно в 90 км от Сеула в провинции Чхунчхонбук расположены другие популярные горячие источники в Корее – Ансон. Считается, что местная вода помогает избавиться от боли в пояснице, простудных и кожных заболеваний.

Горячие источники в окрестностях Пусана

Вторым по величине городом страны является , вокруг которого также сосредоточено огромное количество лечебно-оздоровительных курортов. Самым известными горячими источниками северной части Южной Кореи являются:

  1. Хосимчхон. Вокруг них был построен спа-комплекс с 40 банными комнатами и ваннами, которые можно подобрать в соответствии со своим возрастом и физиологическими особенностями.
  2. Курорт «Спа-лэнд». Расположен в Пусане на пляже Хауэнде. Вода в местных источниках подается с глубины 1000 м и распределяется по 22 ваннам. Здесь также предусмотрены финские сауны и сауны, выдержанные в римском стиле.
  3. Юнсон. В этой части Южной Кореи также находятся горячие источники, окутанные множеством легенд. Причиной их популярности является не только богатое прошлое и полезная вода, но и удобное расположение, благодаря которому у туристов нет проблем с выбором гостиницы.
  4. Чхоксан. Напоследок в Пусане можно посетить источники, известные своей голубовато-зеленой водой. Они расположены у подножья , поэтому предоставляют возможность расслабиться в расслабляющей теплой воде и полюбоваться красивыми горными пейзажами.

Зона горячих источников в Асане

Имеются термальные курорты и за пределами столицы и Пусана:

  1. Того и Асан. В декабре 2008 года в окрестностях южнокорейского города Асана состоялось открытие новой зоны горячих источников. Это целый спа-город, в котором, помимо ванн с минеральной водой, есть тематические парки, бассейны, спортивные площадки и даже кондоминиумы. Местная вода отличается комфортной температурой и массой полезных свойств. Жители Южной Кореи любят приезжать к этим горячим источником, чтобы отдохнуть с семьей, снять стресс в ваннах с теплой водой и полюбоваться цветением экзотических цветов.
  2. Комплекс «Парадайз Спа Того». Расположен в самом городе Асан. Он был создан у горячих источников, которые много веков назад были излюбленным местом отдыха у знатных господ. Натуральная минеральная вода использовалась в процедурах, которые были призваны излечить от множества болезней и предотвратить другие. Сейчас эти горячие источники Южной Кореи известны не только своими лечебными ваннами, но и различными водными программами. Здесь можно записаться на курс аква-йоги, аква-стретчинга или аква-танцев. Зимой же здесь приятно понежиться в ванной с имбирем, женьшенем и другими полезными компонентами.

Среди альтернативных источников геотермальная энергия занимает значительное место - ее так или иначе используют примерно в 80 странах по всему миру. В большинстве случаев это происходит на уровне строительства теплиц, бассейнов, применения в качестве лечебного средства или отопления.

В нескольких странах - в том числе США, Исландии, Италии, Японии и других - построены и работают электростанции.

Геотермальная энергия в целом подразделяется на две разновидности - петротермальную и гидротермальную. Первый тип использует как источник горячие горные породы. Второй - подземные воды.

Если свести все данные по теме в одну диаграмму, обнаружится, что в 99% случаев используется тепло пород, и только в 1% геотермальная энергия извлекается из подземных вод.

Петротермальная энергетика

На настоящий момент в мире достаточно широко используется тепло земных недр, причем преимущественно это энергия неглубоких скважин - до 1 км. С целью обеспечения электричеством, теплом или ГВС устанавливаются скважинные теплообменники, работающие на жидкостях с низкой температурой кипения (например, на фреоне).

Сейчас использование скважинного теплообменника является наиболее рациональным способом добычи тепла. Выглядит это так: теплоноситель циркулирует в замкнутом контуре. Нагретый поднимается по концентрично опущенной трубе, отдавая свое тепло, после чего, охлажденный, при помощи насоса подается в обсадную.

В основе использования энергии земных недр лежит природное явление - по мере приближения к ядру Земли растет температура земной коры и мантии. На уровне 2-3 км от поверхности планеты она достигает более 100 °С, в среднем увеличиваясь с каждым последующим километром на 20 °С. На глубине 100 км температура достигает уже 1300-1500 ºС.

Гидротермальная энергетика

Вода, циркулирующая на больших глубинах, нагревается до значительных величин. В сейсмически активных районах она поднимается на поверхность по трещинам в земной коре, в спокойных же регионах ее можно вывести с помощью скважин.

Принцип действия тот же: нагретая вода поднимается по скважине вверх, отдает тепло, и возвращается по второй трубе вниз. Цикл практически бесконечен и возобновляем до тех пор, пока в земных недрах остается тепло.

В некоторых сейсмически активных регионах горячие воды лежат так близко к поверхности, что можно воочию наблюдать, как работает геотермальная энергия. Фото окрестностей вулкана Крафла (Исландия) демонстрирует гейзеры, которые передают пар для действующей там ГеоТЭС.

Основные черты геотермальной энергетики

Внимание к альтернативным источникам обусловлено тем, что запасы нефти и газа на планете не бесконечны, и постепенно исчерпываются. Кроме того, они есть не везде, и многие страны зависят от поставок из других регионов. Среди иных важных факторов - негативное влияние ядерной и топливной энергетики на среду обитания человека и дикую природу.

Большое достоинство ГЭ - возобновляемость и универсальность: возможность использовать для водо- и теплоснабжения, или для выработки электроэнергии, или для всех трех целей сразу.

Но главное - это геотермальная энергия, плюсы и минусы которой зависят не столько от местности, сколько от кошелька заказчика.

Достоинства и недостатки ГЭ

В числе преимуществ этого вида энергии следующие:

  • она возобновляемая и практически неиссякаемая;
  • независима от времени суток, сезона, погоды;
  • универсальна - с ее помощью можно обеспечить водо- и теплоснабжение, а также электричество;
  • геотермальные источники энергии не загрязняют окружающую среду;
  • не вызывают парникового эффекта ;
  • станции не занимают много места.

Однако имеются и недостатки:

  • геотермальная энергия не считается полностью безвредной из-за выбросов пара, в составе которого могут быть сероводород, радон и другие вредные примеси;
  • при использовании воды с глубоких горизонтов стоит вопрос ее утилизации после использования - из-за химического состава такую воду нужно сливать либо обратно в глубокие слои, либо в океан;
  • постройка станции относительно дорога - это удорожает и стоимость энергии в итоге.

Сферы применения

На сегодняшний день геотермальные ресурсы используются в сельском хозяйстве, садоводстве, аква- и термокультуре, промышленности, сфере жилищно-коммунальных хозяйств. В нескольких странах построены крупные комплексы, обеспечивающие население электроэнергией. Продолжается разработка новых систем.

Сельское хозяйство и садоводство

Чаще всего использование геотермальной энергии в сельском хозяйстве сводится к обогреву и поливу оранжерей, теплиц, установок аква- и гидрокультуры. Подобный подход применяется в нескольких государствах - Кении, Израиле, Мексике, Греции, Гватемале и Теде.

Подземные источники применяются для полива полей, обогрева почвы, поддержания постоянной температуры и влажности в оранжерее или теплице.

Промышленность и ЖКХ

В ноябре 2014 года в Кении начала работать крупнейшая на то время геотермальная электростанция мира. Вторая по размерам находится в Исландии - это Хеллишейди, берущая тепло от источников возле вулкана Хенгидль.

Другие страны, использующие геотермальную энергию в промышленных масштабах: США, Филиппины, Россия, Япония, Коста-Рика, Турция, Новая Зеландия и т. д.

Известны четыре основные схемы добывания энергии на ГеоТЭС:

  • прямая, когда пар направляется по трубам в турбины, соединенные с электрогенераторами;
  • непрямая, аналогичная предыдущей во всем, за исключением того, что перед попаданием в трубы пар очищается от газов;
  • бинарная - в качестве рабочего тепла используется не вода или пар, а другая жидкость, имеющая низкую температуру кипения;
  • смешанная - аналогична прямой, но после конденсации здесь удаляют из воды не растворившиеся газы.

В 2009 году группа исследователей, искавшая пригодные к использованию геотермальные ресурсы, достигла расплавленной магмы всего на глубине 2,1 км. Подобное попадание в магму - большая редкость, это всего второй известный случай (предыдущий произошел на Гавайях в 2007 году).

Хотя соединенная с магмой труба ни разу не подключалась к находящейся неподалеку ГеоТЭС Крафла, ученые получили весьма многообещающие результаты. До сих пор все работающие станции брали тепло опосредованно, из земных пород либо из подземных вод.

Частный сектор

Одна из наиболее перспективных сфер - частный сектор, для которого геотермальная энергия - это реальная альтернатива автономного газового отопления. Самая серьезная преграда здесь - при довольно дешевой эксплуатации высокая начальная стоимость оборудования, которая значительно выше, чем цена установки «традиционного» отопления.

Свои разработки для частного сектора предлагают компании MuoviTech, Geodynamics Ltd, Vaillant, Viessmann, Nibe.

Страны, использующие тепло планеты

Безусловным лидером в использовании георесурсов является США - в 2012 году выработка энергии в этой стране достигла отметки 16.792 миллиона мегаватт-часов. В том же году, суммарная мощность всех геотермальных станций на территории Штатов достигала 3386 МВт.

ГеоТЭС на территории США расположены в штатах Калифорния, Невада, Юта, Гавайи, Орегон, Айдахо, Нью-Мехико, Аляска и Вайоминг. Самая крупная группа заводов носит название «Гейзеры» и расположена неподалеку от Сан-Франциско.

Кроме Соединенных Штатов, в первой десятке лидеров (по состоянию на 2013 год) также находятся Филиппины, Индонезия, Италия, Новая Зеландия, Мексика, Исландия, Япония, Кения и Турция. При этом в Исландии геотермальные источники энергии обеспечивают 30% от всей потребности страны, на Филиппинах - 27%, а в США - меньше 1%.

Потенциальные ресурсы

Работающие станции - только начало, отрасль лишь начинает развиваться. Исследования в этом направлении идут постоянно: более чем в 70 странах ведется разведка потенциальных месторождений, в 60 освоено промышленное использование ГЭ.

Перспективными выглядят сейсмически активные районы (как это видно на примере Исландии) - штат Калифорния в США, Новая Зеландия, Япония, страны Центральной Америки, Филиппины, Исландия, Коста-Рика, Турция, Кения. Эти страны имеют потенциально выгодные не исследованные месторождения.

В России это Ставропольский край и Дагестан, остров Сахалин и Курильские о-ва, Камчатка. В Беларуси определенный потенциал есть на юге страны, охватывая города Светлогорск, Гомель, Речица, Калинковичи и Октябрьский.

На Украине перспективными являются Закарпатская, Николаевская, Одесская и Херсонская области.

Достаточно перспективным является полуостров Крым, тем более что большая часть потребляемой им энергии импортируется извне.