Фотодиод - это светочувствительный диод, который использует энергию света для создания напряжения. Широко используются в бытовых и промышленных автоматических системах управления, где переключателем является количество поступающего света. Например, контроль степени открытия жалюзи в системе умного дома, исходя из уровня освещенности

Когда свет попадает на фотодиод, то энергия света, попавшего на светочувствительный материал, вызывает появление напряжения, которое заставляет электроны двигаться через P-N переход . Существует два типа фотодиодов: фотоэлектрические и фотопроводящие.

Фотопроводящие диоды

Такие диоды используются для управления электрическими цепями, на которые потенциал подается извне, то есть с постороннего источника.

Например, они могут регулировать включение и выключение уличного освещения или же открывать и закрывать автоматические двери.

В типичной цепи, в которой установлен фотодиод, потенциал, подаваемый на диод, имеет смещение в обратном направлении, а его значение немного ниже пробивного напряжения диода. По такой цепи ток не идет. Когда же свет попадает на диод, то дополнительное напряжение, которое начинает двигаться через P-N переход, вызывает сужение обедненной области и создает возможность для движения тока через диод. Количество проходящего тока определяется интенсивностью светового потока, попадающего на фотодиод.

Фотоэлектрические диоды

Фотоэлектрические диоды являются единственным источником напряжения для цепи, в которой они установлены.

Одним из примеров такого фотоэлектрического диода может служить фотоэкспонометр используемый в фотографии для определения освещенности. Когда свет попадает на светочувствительный диод в фотоэкспонометре, то возникающее в результате этого напряжение приводит в действие измерительный прибор. Чем выше освещенность, тем большее напряжение возникает на диоде.

Фотодиодом называют полупроводниковый фотоэлектрический прибор, в котором используется внутренний фотоэффект. Устройство фотодиода аналогично устройству обычного плоскостного диода. Отличие состоит в том, что его p–n переход одной стороной обращен к стеклянному окну, через которое поступает свет, и защищен от воздействия света с другой стороны. Фотодиоды могут работать в одном из двух режимов:

– без внешнего источника электрической энергии (вентильный или фотогенераторный, фотогальванический режим);

– с внешним источником электрической энергии (фотодиодный или фотопреобразовательный режим).

Рассмотрим работу фотодиода в вентильном режиме, схема включения представлена на рис.8.7.

Рис 8.7. Схема включения фотодиода для работы в вентильном режиме

При отсутствии светового потока на границе p–n перехода создается контактная разность потенциалов. Через переход навстречу друг другу протекают два тока – I др и I диф, которые уравновешивают друг друга. При освещении p–n перехода фотоны, проходя в толщу полупроводника, сообщают части валентных электронов энергию, достаточную для перехода их в зону проводимости, т.е. за счет внутреннего фотоэффекта генерируются дополнительные пары электрон-дырка. Под действием контактной разности потенциалов p–n перехода неосновные носители заряда n–области – дырки переходят в р–область, а неосновные носители заряда р–области – электроны – в n–область. Дрейфовый ток получает дополнительное приращение, называемое фототоком Дрейф неосновных носителей приводит к накоплению избыточных дырок в р–области, а электронов в n–области, это приводит к созданию на зажимах фотодиода при разомкнутой внешней цепи разности потенциалов, называемой фото-ЭДС Потенциальный барьер перехода, как и при прямом напряжении, уменьшается на величину фото-ЭДС, называемую напряжением холостого хода U хх при разомкнутой внешней цепи. Снижение потенциального барьера увеличивает ток диффузии DI диф основных носителей через переход. Он направлен навстречу фототоку. Поскольку ключ разомкнут, в структуре устанавливается термодинамическое равновесие токов:

Значение фото-ЭДС не может превышать контактной разности потенциалов p–n перехода. В противном случае из-за полной компенсации поля в переходе разделение оптически генерируемых носителей прекращается. Так, например, у селеновых и кремниевых фотодиодов фото-ЭДС достигает 0,5…0,6 В, у фотодиодов из арсенида галлия – 0,87 В.

При подключении нагрузки к освещенному фотодиоду (ключ замкнут), в электрической цепи появится ток, обусловленный дрейфом неосновных носителей. Значение тока зависит от фото-ЭДС и сопротивления нагрузки, максимальный ток при одной и той же освещенности фотодиода будет при сопротивлении резистора, равном нулю, т.е. при коротком замыкании фотодиода. При сопротивлении резистора не равном нулю, ток во внешней цепи фотодиода уменьшается.


Ток, протекающий через фотодиод, можно записать в следующем виде:

где I ф – фототок;

I 0 – тепловой ток p–n перехода;

U – напряжение на диоде.

При разомкнутой внешней цепи (R н =¥, I ф общ =0) легко выразить напряжение на переходе при холостом ходе, которое равно фото-ЭДС:

Фотодиоды, работающие в режиме фотогенератора, часто используются в качестве источников питания, преобразующих энергию солнечного излучения в электрическую.

В фотодиодном или фотопреобразовательном режиме работы последовательно с фотодиодом включается внешний источник энергии, смещающий диод в обратном направлении (рис. 5.12).

Рис.8.8. Схема включения фотодиода для работы в фотодиодном режиме

При отсутствии светового потока и под действием обратно приложенного напряжения через фотодиод протекает обычный начальный обратный ток I о, который называют темновым. Темновой ток ограничивает минимальное значение светового потока. При освещении фотодиода кванты света дополнительно вырывают электроны из валентных связей полупроводника, увеличивая тем самым поток неосновных носителей заряда через p–n переход. Чем больше световой поток, падающий на фотодиод, тем выше концентрация неосновных носителей заряда вблизи запорного слоя, и тем больший фототок, определяемый напряжением внешнего источника и световым потоком, протекает через диод.

При правильно подобранном сопротивлении нагрузки R н и напряжении источника питания этот ток будет зависеть только от освещенности прибора, а падение напряжения на сопротивлении можно рассматривать как полезный сигнал.

Фотодиодный режим характеризуется высокой чувствительностью, большим динамическим диапазоном преобразования оптического излучения, высоким быстродействием (барьерная емкость p–n перехода уменьшается). Недостатком фотодиодного режима работы является большой темновой ток, зависящий от температуры.

5.9. Характеристики и параметры фотодиода

Фотодиод описывается вольтамперной, энергетической (световой), спектральной и частотной характеристиками, приведенными на рис. 8.9, 8.10.

Если к неосвещенному фотодиоду подключить источник напряжения, значение и полярность которого можно изменять, то снятые при этом вольтамперные характеристики будут иметь такой же вид, как у обычного полупроводникового диода (рис. 8.9,а). При освещении фотодиода существенно изменяется лишь обратная ветвь вольтамперной характеристики, прямые же ветви при сравнительно небольших напряжениях практически совпадают.

Рис 8.9. Схема включения фотодиода для работы в вентильном режиме

В квадранте III фотодиод работает в фотодиодном режиме, а в квадранте IV в фотовентильном режиме, и фотоэлемент становится источником электрической энергии. Квадрант I – это нерабочая область для фотодиода, в этом квадранте p–n переход смещен в прямом направлении.

Энергетическая характеристика фотодиода связывает фототок со световым потоком, падающим на фотодиод рис. 8.9,б. При работе фотодиода в вентильном режиме спектральные характеристики существенно зависят от сопротивления резистора, включенного во внешнюю цепь. С ростом нагрузочного сопротивления характеристики все более искривляются и при больших сопротивлениях имеют ярко выраженный участок насыщения. При работе фотодиода в фотодиодном режиме энергетические характеристики линейны, т.е. практически все фотоносители доходят до p–n перехода и участвуют в образовании фототока.

Спектральная характеристика фотодиода аналогична соответствующим характеристикам фоторезистора и зависит от материала фотодиода и количества примесей (рис. 8.10,а).

Рис 8.10. Спектральная (а) и частотная характеристика фотодиода

Селеновые фотодиоды имеют спектральную характеристику, близкую по форме к спектральной зависимости чувствительности человеческого глаза. Германиевые и кремниевые фотодиоды чувствительны как в видимой, так и в инфракрасной части спектра излучения.

Частотная характеристика показывает изменение интегральной чувствительности при изменении яркости светового потока с разной частотой модуляции (рис. 8.1,б). Быстродействие фотодиода характеризуется граничной 0частотой, на которой интегральная чувствительность уменьшается в раз по сравнению со своим низкочастотным значением.

Для повышения чувствительности и быстродействия разработаны следующие фотодиоды: со встроенным электрическим полем; фотодиоды с p–i–n структурой; с барьером Шотки; лавинные фотодиоды.

Фотодиоды со встроенным электрическим полем имеют неравномерно легированную базу, за счет чего возникает внутреннее электрическое поле, которое ускоряет движение неосновных носителей заряда.

Фотодиоды с p–i–n структурой имеют большую толщину области, обедненной основными носителями, i–область имеет удельное сопротивление в 10 6 …10 7 раз больше, чем сопротивление легированных областей n– и p–типов. К переходу можно прикладывать большие обратные напряжения, и однородное электрическое поле устанавливается по всей i–области. Падающее световое излучение поглощается i–областью, имеющей сильное электрическое поле, что способствует быстрому дрейфу носителей в соответствующие области.

У фотодиодов с барьером Шотки за счет минимального сопротивления базы и отсутствия процессов накопления и рассасывания избыточных зарядов достигается высокое быстродействие. У лавинных фотодиодов происходит лавинное размножение носителей в p–n переходе, и за счет этого резко возрастает чувствительность, их быстродействие составляет f гр = 10 11 …10 12 Гц. Эти диоды считаются одними из перспективных элементов оптоэлектроники.

Параметры фотодиодов следующие:

1. Темновой ток I Т – начальный обратный ток, протекающий через диод при отсутствии внешнего смещения и светового излучения (10…20 мкА для германиевых и 1…2 мкА для кремниевых диодов).

2. Рабочее напряжение U p – номинальное напряжение, прикладываемое к фотодиоду в фотодиодном режиме (U p =10…30 В).

3. Интегральная чувствительность S инт показывает, как изменяется фототок при единичном изменении светового потока:

4. Граничная частота f гр – частота, на которой интегральная чувствительность уменьшается в раз (10 7 …10 12 Гц).

Фотодиоды преобразуют световые сигналы прямо в электрические, используя обрат-лый пр сравнению со светодиодами физический процесс. В p-i-n-фотодиоде есть широкий внутренний (i-) полупроводниковый слой, разделяющий зоны р- и n-типа, как показано на рис. 6.9. На диод подается обратное смещение (5-20 вольт), это помогает удерживать лосители заряда от внутренней области.

Рис. 6.9. p-i-n-фотодиод

Ширина внутреннего слоя гарантирует, что высока вероятность поглощения входящих фотонов именно этим слоем, а не областями р- или n-типа. Внутренний слой имеет высокое сопротивление, поскольку в нем нет свободных носителей заряда. Это приводит к падению большей части напряжения на этот слой, и результирующее электрическое поле повышает скорость ответа и снижает шум. Когда луч света с подходящей энергией попадает на внутренний слой, он создает пару электрон - дырка, поднимая электрон из валентной зоны в зону проводимости и оставляя на его месте дырку. Напряжение смещения заставляет эти носители заряда (электроны в зоне проводимости) быстро смещаться из переходной зоны, создавая ток, пропорциональный падающему свету, как показано на рис. 6.9.

6.7.2. Рабочие параметры

Длина волны отсечки

У входящего фотона должно быть достаточно энергии для подъема электрона через запрещенную зону и создания пары электрон - дырка. У различных полупроводниковых материалов ширина запрещенной зоны различная, энергетический барьер в электрон-вольтах (эВ) может быть связан с длиной волны (λ) с помощью того же самого уравнения, как для светодиодов.

Для конкретного типа детектора энергетический барьер W есть величина постоянная, поэтому вышеприведенная формула дает максимальную длину волны, которая может быть зафиксирована, то есть длину волны отсечки.

Чувствительность

Чувствительность ρ есть отношение выходного тока (i ) детектора к входной оптической -мощности (Р ).

Для 800 нм чувствительность кремния около 0,5 А/Вт, а пиковая чувствительность InGaAs около 1,1 А/Вт для 1700 нм, снижаясь до 0,77 А/Вт для 1300 нм.

Спектральная характеристика

Спектральная характеристика показывает изменение чувствительности в зависимости от длины волны. Типичные кривые спектральной характеристики для кремниевых и InGaAs p-i-n-диодов показаны на рис. 6.10.

Квантовая эффективность

Квантовая эффективность излучателя определяется как отношение числа выделенных электронов к числу падающих фотонов. У кремния и InGaAs пиковая квантовая эффективность около 80%.

Рис. 6.10. Спектральные характеристики p-i-n-диодов

Скорость ответа

Скорость ответа детектора ограничена временем прохода, которое является временем преодоления свободными зарядами ширины внутреннего слоя. Это функция напряжения обратного смещения и физической ширины. Для быстрых p-i-n-диодов она колеблется от 1,5 до 10 нс. Емкость также влияет на ответ устройства, причем емкость перехода образует изолирующим внутренним слоем между электродами, образованными p- и n-областями. У высокоскоростных фотодиодов время ответа может достигать 10 пикосекунд при емкости в несколько пикофарад с очень маленькими площадями поверхностей.

Вольтамперная характеристика

Типичные вольтамперные (I-U) кривые для кремниевого p-i-n-фотодиода показа, на рис. 6.11. Можно видеть, что даже когда нет оптической мощности, течет небольшой обратный ток, который называется темновым током (dark current). Он вызывается температурным образованием свободных носителей зарядов, обычно удваиваясь через каждые 10°С прироста температуры после 25°С.

Динамический диапазон

Линейная зависимость между напряжением и оптической мощностью, показанная на рис. 6.11 сохраняется обычно на протяжении около шести десятков, давая динамический диапазон около 50 дБ.

Рис. 6.11. Вольтамперные характеристики кремниевого p-i-n-фотодиода

6.7.3. Конструкция p-i-n-фотодиодов

Конструкция p-i-n-фотодиодов подобна использовавшейся для светодиодов и лазеров, но оптические требования менее критичны. Активная область детекторов обычно гораздо больше, чем сердечник волокна, поэтому поперечное выравнивание не создает проблем.

Лабораторная работа № 16

Изучение фотодиода

Цель: Ознакомиться с принципом действия, устройством, характеристиками и применением полупроводниковых фотодиодов.

Приборы и принадлежности: германиевый фотодиод ФД-7Г, стенд для измерения вольт-амперных характеристик диодов, оптическая скамья с осветителем, блок питания, осциллограф.

Теоретическое введение

Фотодиодом называется полупроводниковый диод, чувствительный к свету и предназначенный для преобразования светового потока (оптического излучения) в электрический сигнал.

Не отличаясь по принципу действия от фотопреобразователя солнечной энергии, фотодиоды имеют свои конструктивные особенности и характеристики, которые определяются их назначением.

Фотодиоды предназначены для применения в качестве приёмников и датчиков оптического излучения (обычно видимого и инфракрасного) в составе аппаратуры и различных приборов, использующих видимое и инфракрасное излучение.

В основе работы фотодиодов лежит явление внутреннего фотоэффекта, при котором под действием света в полупроводнике появляются дополнительные (неравновесные) электроны и дырки, создающие фототок или фотоэдс.

1. Принцип работы фотодиодов с p-n-переходом. В фотодиодах светочувствительным элементом является переходная область - p-n-переход, расположенная между областями с электронной и дырочной проводимостью (рис.1).



Образование p-n-перехода. Полупроводник n-типа содержит некоторое количество примесных атомов донорного типа, которые при комнатной температуре практически все ионизованы. Таким образом, в таком полупроводнике имеется n о свободных электронов и такое же количество неподвижных положительно заряженных ионов донорной примеси.

В дырочном полупроводнике (полупроводнике p-типа) реализуется подобная ситуация. В нем имеется p о свободных дырок и столько же отрицательно заряженных ионов акцепторных атомов. Принцип образования p-n-перехода показан на рис. 1.

При контакте p- и n- областей в них, вследствие наличия градиента концентраций электронов и дырок, возникает диффузионный поток электронов из полупроводника n-типа в полупроводник p-типа и, наоборот, поток дырок из p- полупроводника в n-полупроводник. Электроны, перешедшие из n-области в р-область, рекомбинируют с дырками вблизи границы раздела. Аналогично рекомбинируют дырки, перейдя из р-области в n- область. В результате вблизи p-n-перехода практически не остается свободных носителей заряда (электронов и дырок).

Тем самым по обе стороны от p-n-перехода образуется сформированный неподвижными примесными ионами двойной заряженный слой (другие названия – слой обеднения или область пространственного заряда (ОПЗ), запирающий слой), создающий сильное электрическое поле. Электрическое поле запирающего слоя направлено от n –области к p-области и противодействует процессу диффузии основных носителей заряда из областей удаленных от p-n-перехода в обедненную область. Такое состояние является равновесным и при отсутствии внешних возмущений может существовать сколь угодно долго.

Рис. 1 – Образование p-n- перехода Рис. 2

Принцип работы фотодиода. Оптическое излучение (свет), поглощаемое в полупроводниковой структуре с p-n-переходом, создает свободные пары “электрон-дырка” при условии, что энергия фотона hν превышает ширину запрещенной зоны полупроводника Eg.

Свободные электроны и дырки возникают как в p- и n- областях перехода, так и в непосредственной близости к запирающему слою. Существующее в запирающем слое электрическое поле (поле p-n-перехода) разделяет созданные светом свободные носители заряда в зависимости от их знака в разные части фотодиода: свободные электроны перемещаются в n-область перехода, а дырки перемещаются в p- область, что приводит к заряжению этих областей (рис.2).

При освещениидырки накапливаются в р-области, заряжая её положительно. Электроны накапливаются в n-области, заряжая её отрицательно. Поэтому между ними возникает разность потенциалов.

При это возможны два режима работы прибора: в схемах с внешним источником питания и без него. Режим работы фотодиода с внешним источником питания называется фотодиодным, а без внешнего источника питания - режимом генерации фотоэдс (другое название - фотовольтаический режим).

Режим генерации. В этом случае на переход не подано внешнее напряжение и цепь разомкнута. Освещение приводит к накоплению фотоэлектронов в n-области и дырок в р-области. В результате образуется разность потенциалов U ф (часто называют «напряжение

Рис. 3 Рис.4 – Вольт-амперные характеристики фотодиода

при различных световых потоках (Ф 1 < Ф 2 < Ф 3).

холостого хода U хх »), то есть появляется фотоэдс. Накопление избыточных электронов и дырок происходит не беспредельно. Одновременно с возрастанием концентрации дырок в дырочной области и электронов в электронной области происходит понижение потенциального барьера перехода на величину фотоэдс и возникает диффузия основных носителей заряда через р-n-переход. Наступает динамическое равновесие.

При подключении к внешним выводам фотодиода нагрузки R н в её цепи появится ток (рис.3). Во внешней цепи фототок направлен от р-области к n-области. В таких условиях фотодиод работает как преобразователь энергии излучения в электрическую энергию.

Вольт-амперная характеристика освещённого р-n-перехода. Вольт-амперную характеристику р-n-перехода при освещении можно записать в следующем виде:

, (1)

где I н - ток насыщения в темноте; I ф - фототок, то есть ток, созданный возбуждёнными светом носителями заряда и проходящий через р-n-переход; U – внешнее напряжение на переходе.

На рис. 4 показаны графики вольт-амперных зависимостей при различных световых потоках Ф. При отсутствии освещения (I ф = 0) вольт-амперная (темновая) характеристика проходит через начало координат. Остальные кривые, соответствующие определённым световым потокам, смещаются по оси ординат (оси токов) на отрезки, равные силе фототока - I ф. Из выражения (1) видно, что при обратном включении (U < 0) и при

(qU >> kT) сила тока через переход I = - (I н + I ф).

Части кривых, расположенные в третьем квадранте, соответствуют фотодиодному режиму работы): части кривых, расположенные в четвёртом квадранте, - режиму генерации фотоэдс.

Если во внешней цепи сила тока I = 0 (цепь разомкнута), то из выражения (1) можно найти напряжение холостого хода U ф.

(2)

Если фотодиод в режиме генерации включен во внешнюю цепь с малым сопротивлением, то фотоэлектроны в n – области не накапливаются и U ф = 0. А поскольку внешнее напряжение отсутствует, то в цепи течёт ток I = - I ф, часто называемый током короткого замыкания и прямо пропорциональный световому потоку I ф ~ Ф.

Рис. 5 – Структурная схема фотодиода и схема

его включения при работе в фотодиодном режиме: Рис.6

1 - кристалл полупроводника; 2 - контакты;

3 - выводы; Ф - поток электромагнитного

излучения; n и р - области полупроводника;

Е - источник постоянного тока; R н - нагрузка.

Фотодиодный режим. В этом режиме на р-n-переход подано обратное напряжение

(р-область подключена к минусу источника напряжения, а n-область к плюсу источника; рис. 5). Схема включает также нагрузочное сопротивление (резистор) R н. В этом случае переход обладает огромным сопротивлением и через него течёт слабый обратный ток (ток насыщения в темноте I н). При освещении фотодиода ток через него резко возрастает за счёт возникновения фототока и может значительно превысить темновой ток I н (рис. 4). Соответственно изменяется и падение напряжения на нагрузочном сопротивлении R н. При правильном выборе иcточника напряжения и внешнего сопротивления R н величина электрического сигнала (напряжения на резисторе) может быть большой и поэтому фотодиоды широко применяются для регистрации и измерения световых сигналов.

Ток через фотодиод в основном определяется потоками неосновных неравновесных носителей заряда (электронов в р-области и дырок в n-области), возникающих при освещении, и не зависит от напряжения, то есть носит характер тока насыщения. Поэтому в фотодиодном режиме наблюдается строгая линейная зависимость фототока от освещённости вплоть до весьма больших значений освещённости. Это является важным достоинством фотодиодов.

Для регистрации переменных оптических сигналов (световых потоков) применяется схема, показанная на рис. 6. Изменяющийся световой поток, падающий на фотодиод, вызывает в цепи переменную составляющую тока, которая повторяет изменения интенсивности света. А на резисторе R н происходят такие же изменения напряжения, которое и поступает на вход регистрирующей системы. Чтобы отделить (не пропустить) постоянную составляющую напряжения на резисторе, в сигнальной цепи находится разделительный конденсатор С.

2. Технология изготовления и конструкция. Для изготовления р-n-переходов при производстве фотодиодов используют метод вплавления примесей и диффузию. Основное внимание при этом уделяется глубине расположения р-n-перехода относительно

Рис.7 – Конструкция гераниевого Рис.8 – Спектральные характеристики

фотодиода ФД-1. германиевых (1) и кремниевых фотодиодов (2).

освещаемой поверхности кристалла, поскольку она определяет инерционность (быстродействие) фотодиода. На рис.7 показана конструкция германиевого фотодиода ФД-1 в металлическом корпусе. Круглая пластинка 1, вырезанная из монокристалла германия с электропроводностью n-типа, закреплена с помощью кристаллодержателя 2 в коваровом корпусе 3. Вывод 4 от индиевого электрода, вплавленного в германий, пропущен через коваровую трубку 5, закреплённую стеклянным изолятором 6 в ножке корпуса 7. Другим электродом является сам корпус фотодиода, так как кристалл германия припаян к кристаллодержателю оловянным кольцом 8. В корпусе фотодиода имеется круглое отверстие, закрытое стеклянной линзой 9, которая собирает световой поток на ограниченную поверхность германиевой пластинки. Для защиты р-n-перехода от воздействия окружающей среды корпус фотодиода герметизирован.

Некоторые виды фотодиодов имеют пластмассовый корпус. Материал такого корпуса и окна в металлическом корпусе выбирают такими, чтобы они были прозрачными для той части спектра (излучения), к которой должен быть чувствителен данный фотодиод. Так, для германиевых приборов – это видимый свет и коротковолновое инфракрасное излучение.

Материалами , из которых изготавливают фотодиоды, служат Ge, Si, GaAs, HgCdTe и другие полупроводниковые соединения.

Основные характеристики и параметры фотодиодов

- Чувствительность S - параметр, который отражает изменение электрического сигнала (сила тока или напряжение) на выходе фотодиода при его освещении.

Количественно измеряется отношением изменения электрической характеристики (силы тока I ф или напряжения U ф), снимаемой на выходе фотодиода, к потоку излучения Ф, падающему на прибор.

S I = I ф / Ф - токовая чувствительность, S v = U ф / Ф - вольтовая чувствительность.

- Порог чувствительности Ф п – величина минимального светового потока, регистрируемого фотодиодом, отнесённая к единице полосы рабочих частот.

- Постоянная времени τ, которая характеризует инерционность прибора, то есть его быстродействие.

Это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз по отношению к установившемуся значению.

Для фотодиодов с р-n-переходом она составляет 10 -6 – 10 -8 с.

- Темновое сопротивление R Т – сопротивление фотодиода в отсутствие освещения.

- Спектральная характеристика – зависимость фототока от длины волны λ падающего на фотодиод света. Для германиевых и кремниевых фотодиодов спектральные характеристики показаны на рис.8. Длина волны, на которую приходится максимальная чувствительность, у кремниевых фотодиодов примерно равна λ макс = 800 – 900 нм, у германиевых фотодиодов находится при λ макс = 1500 – 1600 нм.

- Вольт-амперная характеристика - зависимость светового тока от напряжения при постоянном световом потоке.

- Световая характеристика - зависимость фототока от освещённости.

Некоторые другие параметры приведены в таблице.

Условное графическое обозначение фотодиодов показано на рис.9, фотографии некоторых фотодиодов – на рис.10.

Рис. 9 Рис.10

4. Применение фотодиодов. Современные фотодиоды обладают наилучшим сочетанием основных параметров:

1. Высокая чувствительность к оптическим сигналам;

2. Высокое быстродействие;

3. Малое рабочее напряжение;

4. Линейная зависимость фототока от освещённости в широком диапазоне освещённостей.

5. Низкий уровень шумов;

6. Простота устройства.

Поэтому они широко применяются в устройствах автоматики, вычислительной и лазерной техники, волоконно-оптических линиях связи.

В повседневной жизни фотодиоды используются в таких приборах, как устройства чтения компакт-дисков, современные фотокамеры, различные сенсорные устройства.

Например, инфракрасные фотодиоды применяются в пультах дистанционного управления, системах охраны, безопасности и автоматики.

Существуют рентгеновские фотодиоды, применяемые для регистрации ионизирующего излучения и частиц с высокой энергией. Одно из важных применений - в медицинских приборах, например в установках для проведения компьютерной томографии.

Выполнение работы

Задание 1. Измерение вольт-амперной характеристики фотодиода при отсутствии освещения (в темноте).

Принцип действия фотодиода

Полупроводниковый фотодиод - это полупроводниковый диод обратный ток которого зависит от освещенности.

Обычно в качестве фотодиода используют полупроводниковые диоды с р-п переходом, который смещен в обратном направлении внешним источником питания. При поглощении квантов света в р-n переходе или в прилегающих к нему областях образуются новые носители заряда. Неосновные носители заряда, возникшие в областях, прилегающих к р-п переходу на расстоянии, не превь,’ ,ающем диффузионной длины, диффундируют в р-п переход и проходя* через него под действием электрического поля. То есть обратный ток при освещении возрастает. Поглощение квантов непосредственно в р-п переходе приводит к аналогичным результатам. Величина, на которую возрастает обратный ток, называется фототоком.

Характеристики фотодиодов

Свойства фотодиода можно охарактеризовать следующими характеристиками:

Вольт-амперная характеристика фотодиода представляет собой зависимость светового тока при неизменном световом потоке и темнового тока 1т от напряжения.

Световая характеристика фотодиода обусловлена зависимостью фототока от освещенности. При увеличении освещенности фототок возрастает.

Спектральная характеристика фотодиода - это зависимость фототока от длины волны падающего света на фотодиод. Она определяется для больших длин волн шириной запрещенной зоны, а при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.

Постоянная времени - это время, в течение которого фото- ток фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.

Темновое сопротивление - сопротивление фотодиода в отсутствие освещения.

Интегральная чувствительность определяется формулой:

где 1ф - фототок, Ф - освещенность.

Инерционность

Существует три физических фактора, влияющих на инерционность:

1. Время диффузии или дрейфа неравновесных носителей через базу т;

2. Время пролета через р-n переход т,;

3. Время перезарядки барьерной емкости р-п перехода, характеризующееся постоянной времени RC6ap.

Толщина р-п перехода, зависящая от обратного напряжения и концентрации примесей в базе, обычно меньше 5 мкм, а значит, т, - 0,1 не. RC6ap определяется барьерной емкостью р-п перехода, зависящей от напряжения и сопротивления базы фотодиода при малом сопротивлении нагрузки во внешней цепи. Величина RC6ap обычно составляет нескольких наносекунд.

Расчет КПД фотодиода и мощности

КПД вычисляется по формуле:

где Росв - мощность освещенности; I - сила тока;

U - напряжение на фотодиоде.

Расчет мощности фотодиода иллюстрирует рис. 2.12 и таблица 2.1.

Рис. 2.12. Зависимость мощности фотодиода от напряжения и силы тока

Максимальная мощность фотодиода соответствует максимальной площади данного прямоугольника.

Таблица 2.1. Зависимость мощности от КПД

Мощность освещенности, мВт

Сила тока, мА

Напряжение, В

Применение фотодиода в олтоэлектронике

Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах:

Оптоэлектронные интегральные микросхемы.

Фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств, а именно: почти идеальная гальваническая развязка управляющих цепей от силовых при сохранении между ними сильной функциональной связи.

Многоэлементные фотоприемники.

Эти приборы (сканистор, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие) относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Оптоэлектрический «глаз» на основе фотодиода способен реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ.

Число фоточувствительных ячеек в приборе является достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения).

Как происходит восприятие образов?

Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. Тогда на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.

При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования. Оптроны.

Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической связи между ними, конструктивно объединенные и помещенные в один корпус. Между управляющей цепью (ток в которой мал, порядка нескольких мА), куда включен излучатель, и исполнительной, в которой работает фотоприемник, отсутствует электрическая (гальваническая) связь, а управляющая информация передается посредством светового излучения.

Это свойство оптоэлектронной пары (а в некоторых видах оптронов присутствует по несколько не связанных друг с другом даже оптически оптопар) оказалось незаменимым в тех электронных узлах, где нужно максимально устранить влияние выходных электрических цепей на входные. У всех дискретных элементов (транзисторов, тиристоров, микросхем, являющихся коммутационными сборками, или микросхем с выходом, позволяющим коммутировать нагрузку большой мощности) управляющие и исполнительные цепи электрически связаны друг с другом. Это часто недопустимо, если коммутируется высоковольтная нагрузка. К тому же, возникающая обратная связь неминуемо приводит к появлению дополнительных помех.

Конструктивно фотоприемник обычно крепится на дне корпуса, а излучатель - в верхней части. Зазор между излучателем и фотоприемником заполнен иммерсионным материалом - чаще всего эту роль выполняет полимерный оптический клей. Этот материал исполняет роль линзы, фокусирующей излучение на чувствительный слой фотоприемника. Иммерсионный материал снаружи покрыт специальной пленкой, отражающей световые лучи внутрь, чтобы препятствовать рассеянию излучения за пределы рабочей зоны фотоприемника.

Роль излучателей в оптронах, как правило, выполняют светодиоды на основе арсенид-галлия. Светочувствительные элементы в оптопарах могут представлять собой фотодиоды (оптопары серии АОД…), фототранзисторы, фототринисторы (оптопары серии АОУ.,.) и высокоинтегрированные схемы фотореле. В диодной оптопаре, например, в качестве фотоприемного элемента используется фотодиод на основе кремния, а излучателем служит инфракрасный излучающий диод. Максимум спектральной характеристики излучения диода приходится на длину волны около 1 мкм. Диодные оптопары применяются в фотодиодном и фотогенераторном режимах.

Транзисторные оптроны (серия АОТ…) имеют некоторые преимущества относительно диодных. Коллекторным током биполярного транзистора управляют как оптически (воздействуя на светодиод), так и электрически по базовой цепи (в данном случае работа фототранзистора при отсутствии излучения управляющего светодиода оптрона практически не отличается от работы обыкновенного кремниевого транзистора). У полевого транзистора управление осуществляется через цепь затвора.

Кроме того, фототранзистор может работать в ключевом и усилительных режимах, а фотодиод - только в ключевом. Оптроны с составными-транзисторами (например, АОТ1ЮБ), имеют наибольший коэффициент усиления (как и обычный узел на составном транзисторе), могут коммутировать напряжение и ток достаточно больших величин и по данным параметрам уступают только тиристорным оптронам и оптоэлектронным реле типа КР293КП2 - КР293КП4, которые приспособлены для коммутации высоковольтных и сильноточных цепей. Сегодня в розничной продаже появились новые оптоэлектронные реле серий К449 и К294. Серия К449 позволяет коммутировать напряжение до 400 В при токе до 150 мА. Такие микросхемы в четырехвы- водном компактном корпусе DIP-4 приходят на смену маломощным электромагнитным реле и имеют по сравнению с реле массу преимуществ (бесшумность работы, надежность, долговечность, отсутствие механических контактов, широкий диапазон напряжения срабатывания). Кроме того, их доступная цена объясняется тем, что нет необходимости использовать драгметаллы (в реле ими покрываются коммутирующие контакты).

В резисторных оптронах (например, ОЭП-1) и-злучателями являются электрические минилампы накаливания, помещенные также в один корпус.

Графическим обозначениям оптронов по ГОСТу присвоен условный код - латинская буква U, после которой следует порядковый номер прибора в схеме.

В главе 3 книги описаны приборы и устройства, иллюстрирующие применение оптронов.