Электрический ток в вакууме

Вакуум - это состояние газа, при котором давление меньше атмосферного. Различают низкий, средний и высокий вакуум.

Для создания высокого вакуума необходимое разрежение, за которого в газе, что остался, средняя длина свободного пробега молекул больше размеров сосуда или расстояния между электродами в сосуде. Следовательно, если в сосуде создан вакуум, то молекулы в нем почти не сталкиваются между собой и пролетают свободно межэлектродный пространство. При этом они испытывают столкновения лишь с электродами или со стенками сосуда.

Чтобы в вакууме существовал ток, необходимо поместить в вакуум источник свободных электронов. Наибольшая концентрация свободных электронов в металлах. Но при комнатной температуре они не могут покинуть металл, потому что их в нем удерживают силы кулоновского притяжения положительных ионов. Для преодоления этих сил электрону, чтобы покинуть поверхность металла, необходимо затратить определенную энергию, которую называют работой выхода.

Если кинетическая энергия электрона превысит или будет равна работе выхода, то он покинет поверхность металла и станет свободным.

Процесс испускания электронов с поверхности металла называют эмиссией. В зависимости от того, как была передана электронам необходима энергия, различают несколько видов эмиссии. Один из них - термоелектронна эмиссия.

Ø Испускание электронов нагретыми телами называют термоелектронною эмиссией.

Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод при этом заряжается положительно, и под воздействием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод за секунду, равно числу электронов, которые вернулись на электрод за это время.

2. Электрический ток в вакууме

Для существования тока необходимо выполнение двух условий: наличие свободных заряженных частиц и электрического поля. Для создания этих условий в баллон помещают два электрода (катод и анод) и выкачивают из баллона воздуха. В результате нагрева катода из него вылетают электроны. На катод подают отрицательный потенциал, а на анод - положительный.

Электрический ток в вакууме представляет собой направленный движение электронов, полученных в результате термоэлектронной эмиссии.

3. Вакуумный диод

Современный вакуумный диод состоит из стеклянного или металлокерамического баллона, из которого откачан воздух до давления 10-7 мм рт. ст. В баллон впаяны два электрода, один из которых - катод - имеет вид вертикального металлического цилиндра, изготовленного из вольфрама и покрытого обычно слоем оксидов щелочноземельных металлов.

Внутри катода расположен изолированный проводник, что его нагревает переменный ток. Нагретый катод испускает электроны, достигающие анода. Анод лампы представляет собой круглый или овальный цилиндр, имеющий общую ось с катодом.

Односторонняя проводимость вакуумного диода обусловлена тем, что вследствие нагревания электроны вылетают из горячего катода и движутся до холодного анода. Электроны могут двигаться через диод только от катода к аноду (то есть электрический ток может протекать только в обратном направлении: от анода к катоду).

На рисунке воспроизведен вольт-амперную характеристику вакуумного диода (отрицательное значение напряжения соответствует случаю, когда потенциал катода выше потенциала анода, то есть электрическое поле «пытается» вернуть электроны обратно на катод).

Вакуумные диоды используют для выпрямления переменного тока. Если поместить между катодом и анодом еще один электрод (сетку), то даже незначительное изменение напряжения между сеткой и катодом существенно влиять на анодный ток. Такая электронная лампа (триод) позволяет усиливать слабые электрические сигналы. Поэтому некоторое время эти лампы были основными элементами электронных устройств.

4. Электронно-лучевая трубка

Электрический ток в вакууме применяли в электронно-лучевой трубке (ЭЛТ), без которой долгое время нельзя было представить телевизор или осциллограф.

На рисунке упрощенно показана конструкция ЭЛТ.

Электронная «пушка» в горловине трубки - катод, который испускает интенсивный пучок электронов. Специальная система цилиндров с отверстиями (1) фокусирует этот пучок, делает его узким. Когда электроны попадают на экран (4), он начинает светиться. Управлять потоком электронов можно с помощью вертикальных (2) или горизонтальных (3) пластин.

Электронам в вакууме можно передать значительную энергию. Электронные пучки можно применять даже для плавки металлов в вакууме.

А возможно ли распространение электрического тока в вакууме (от лат. vacuum - пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии - испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) - приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток - катод, холодный электрод, собирающий термоэлектроны – анод.

Полного вакуума нельзя получить никаким насосом. Сколько бы мы ни откачивали лампу, следы газа всегда в ней останутся. Поэтому в лампе электрический ток, с которым мы только что познакомились, проходит фактически не в вакууме, а в очень разреженном газе.

Современные насосы дают столь высокое разрежение, что остающиеся в разрядной трубке молекулы практически не влияют на движение электронов и ток проходит так же, как и в полном вакууме. Однако в некоторых случаях лампа сознательно не откачивается до такой степени. В такой лампе электроны на своём пути многократно сталкиваются с молекулами газа. При ударах они передают молекулам газа часть своей энергии. Обычно эта энергия идёт на нагревание газа, но при определённых условиях молекулы или атомы газа излучают её в виде света. Такие светящиеся трубки можно увидеть над дверями метро, на витринах и вывесках магазинов.

Прохождение электрического тока в газе - чрезвычайно сложное и многообразное явление. Одной из форм его является электрическая дуга, применяемая при электросварке и плавлении металлов.

Температура в ней при атмосферном давлении около 3700 градусов. В дуге, горящей в газе, сжатом до 20 атмосфер, температура доходит до 5900 градусов, то-есть до температуры поверхности Солнца.

Электрическая дуга испускает яркий белый свет и поэтому применяется ещё как мощный источник света в проекционных фонарях и в прожекторах.

Другой формой электрического разряда служит пробой газа. Будем сближать два разноимённо заряженных металлических шара (см. рисунок на обложке). При этом электрическое поле между ними возрастает. Наконец, оно становится настолько большим, что вырывает электроны из молекул воздуха, находящихся между шарами. Происходит ионизация воздуха. Образовавшиеся свободные электроны и ионы устремляются к шарам. На своём пути они разбивают новые молекулы, создают новые ионы. Воздух на мгновение становится проводящим.

Подходя к шарам, ионы нейтрализуют заряды шаров; поле исчезает. Оставшиеся ионы вновь соединяются в молекулы. Воздух снова изолятор.

Всё это происходит в доли секунды. Пробой сопровождается искрой и треском. Искра - результат свечения молекул, возбуждаемых ударами летящих зарядов. Треск вызван расширением воздуха вследствие его нагревания на пути искры.

Это явление напоминает в миниатюре молнию и гром. Действительно, молния - это такой же электрический разряд, происходящий при сближении двух разноимённо заряженных облаков или между облаком и Землёй.

Будем сближать теперь не два предварительно заряженных шара, а два угольных или металлических электрода, присоединённых к достаточно мощному генератору. Возникающий между ними разряд не прекращается, так как благодаря генератору электроды не нейтрализуются попадающими на них ионами. Вместо очень кратковременного пробоя воздуха создаётся устойчивая электрическая дуга (рис. 12), о которой мы уже говорили выше. Высокая температура, развивающаяся в дуге, поддерживает ионизованное состояние воздуха между электродами, а также создаёт значительную термоэлектронную эмиссию из катода.

На этом уроке мы продолжаем изучение протекания токов в различных средах, конкретно, в вакууме. Мы рассмотрим механизм образования свободных зарядов, рассмотрим основные технические приборы, работающие на принципах тока в вакууме: диод и электронно-лучевая трубка. Также укажем основные свойства электронных пучков.

Результат опыта объясняется следующим образом: в результате нагревания металл из своей атомной структуры начинает испускать электроны, по аналогии испускания молекул воды при испарении. Разогретый металл окружает электронное облако. Такое явление называется термоэлектронной эмиссией.

Рис. 2. Схема опыта Эдисона

Свойство электронных пучков

В технике очень важное значение имеет использование так называемых электронных пучков.

Определение. Электронный пучок - поток электронов, длина которого много больше его ширины. Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка) (рис. 3).

Рис. 3. Электронная пушка

Электронные пучки обладают рядом ключевых свойств:

В результате наличия большой кинетической энергии они имеют тепловое воздействие на материал, в который врезаются. Данное свойство применяется в электронной сварке. Электронная сварка необходима в тех случаях, когда важно сохранение чистоты материалов, например, при сваривании полупроводников.

  • При столкновении с металлами электронные пучки, замедляясь, излучают рентгеновское излучение, применяемое в медицине и технике (рис. 4).

Рис. 4. Снимок, сделанный при помощи рентгеновского излучения ()

  • При попадании электронного пучка на некоторые вещества, называющиеся люминофорами, происходит свечение, что позволяет создавать экраны, помогающие следить за перемещением пучка, конечно же, невидимого невооруженным глазом.
  • Возможность управлять движением пучков с помощью электрических и магнитных полей.

Следует отметить, что температура, при которой можно добиться термоэлектронной эмиссии, не может превышать той температуры, при которой идет разрушение структуры металла.

На первых порах Эдисон использовал следующую конструкцию для получения тока в вакууме. В вакуумную трубку с одной стороны помещался проводник, включенный в цепь, а с другой стороны - положительно заряженный электрод (см. рис. 5):

Рис. 5

В результате прохождения тока по проводнику он начинает нагреваться, эмиссируя электроны, которые притягиваются к положительному электроду. В конце концов, возникает направленное движение электронов, что, собственно, и является электрическим током. Однако количество таким образом испускаемых электронов слишком мало, что дает слишком малый ток для какого-либо использования. С этой проблемой можно справиться добавлением еще одного электрода. Такой электрод отрицательного потенциала называется электродом косвенного накаливания. С его использованием количество движущихся электронов в разы увеличивается (рис. 6).

Рис. 6. Использование электрода косвенного накаливания

Стоит отметить, что проводимость тока в вакууме такая же, как и у металлов - электронная. Хотя механизм появления этих свободных электронов совсем иной.

На основе явления термоэлектронной эмиссии был создан прибор под названием вакуумный диод (рис. 7).

Рис. 7. Обозначение вакуумного диода на электрической схеме

Вакуумный диод

Рассмотрим подробнее вакуумный диод. Существует две разновидности диодов: диод с нитью накаливания и анодом и диод с нитью накаливания, анодом и катодом. Первый называется диодом прямого накала, второй - косвенного накала. В технике применяется как первый, так и второй тип, однако диод прямого накала имеет такой недостаток, что при нагревании сопротивлении нити меняется, что влечет за собой изменение тока через диод. А так как для некоторых операций с использованием диодов необходим совершенно неизменный ток, то целесообразнее использовать второй тип диодов.

В обоих случаях температура нити накаливания для эффективной эмиссии должна равняться .

Диоды используются для выпрямления переменных токов. Если диод используется для преобразования токов промышленного значения, то он называется кенотроном.

Электрод, расположенный вблизи испускающего электроны элемента, называется катодом (), другой - анодом (). При правильном подключении при увеличении напряжения растет сила тока. При обратном же подключении ток идти не будет вообще (рис. 8). Этим вакуумные диоды выгодно отличаются от полупроводниковых, в которых при обратном включении ток хоть и минимальный, но есть. Благодаря этому свойству вакуумные диоды используются для выпрямления переменных токов.

Рис. 8. Вольтамперная характеристика вакуумного диода

Другим прибором, созданным на основе процессов протекания тока в вакууме, является электрический триод (рис. 9). Его конструкция отличается от диодной наличием третьего электрода, называемого сеткой. На принципах тока в вакууме основан также такой прибор, как электронно-лучевая трубка, составляющий основную часть таких приборов, как осциллограф и ламповые телевизоры.

Рис. 9. Схема вакуумного триода

Электронно-лучевая трубка

Как уже было сказано выше, на основе свойств распространения тока в вакууме было сконструировано такое важное устройство, как электронно-лучевая трубка. В основе своей работы она использует свойства электронных пучков. Рассмотрим строение этого прибора. Электронно-лучевая трубка состоит из вакуумной колбы, имеющей расширение, электронной пушки, двух катодов и двух взаимно перпендикулярных пар электродов (рис. 10).

Рис. 10. Строение электронно-лучевой трубки

Принцип работы следующий: вылетевшие вследствие термоэлектронной эмиссии из пушки электроны разгоняются благодаря положительному потенциалу на анодах. Затем, подавая желаемое напряжение на пары управляющих электродов, мы можем отклонять электронный пучок, как нам хочется, по горизонтали и по вертикали. После чего направленный пучок падает на люминофорный экран, что позволяет нам видеть на нем изображение траектории пучка.

Электронно-лучевая трубка используется в приборе под названием осциллограф (рис. 11), предназначенном для исследования электрических сигналов, и в кинескопических телевизорах за тем лишь исключением, что там электронные пучки управляются магнитными полями.

Рис. 11. Осциллограф ()

На следующем уроке мы разберем прохождение электрического тока в жидкостях.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
  1. Physics.kgsu.ru ().
  2. Cathedral.narod.ru ().

Домашнее задание

  1. Что такое электронная эмиссия?
  2. Какие есть способы управления электронными пучками?
  3. Как зависит проводимость полупроводника от температуры?
  4. Для чего используется электрод косвенного накала?
  5. *В чем основное свойство вакуумного диода? Чем оно обусловлено?

Перед тем, как говорить, по какому механизму распространяется электрический ток в вакууме, необходимо понять, что же это за среда.

Определение. Вакуум – состояние газа, при котором свободный пробег частицы больше размера сосуда. То есть такое состояние, при котором молекула или атом газа пролетает от одной стенки сосуда к другой, не сталкиваясь с другими молекулами или атомами. Существует также понятие глубины вакуума, которое характеризует то малое количество частиц, которое всегда остается в вакууме.

Для существования электрического тока необходимо наличие свободных носителей заряда. Откуда они берутся в области пространства с очень малым содержанием вещества? Для ответа на этот вопрос необходимо рассмотреть опыт, проведенный американским физиком Томасом Эдисоном (рис. 1). В ходе эксперимента две пластины помещались в вакуумную камеру и замыкались за ее пределами в цепь с включенным электрометром. После того как одну пластину нагревали, электрометр показывал отклонение от нуля (рис. 2).

Результат опыта объясняется следующим образом: в результате нагревания металл из своей атомной структуры начинает испускать электроны, по аналогии испускания молекул воды при испарении. Разогретый металл окружает электронное озеро. Такое явление называется термоэлектронной эмиссией.

Рис. 2. Схема опыта Эдисона

В технике очень важное значение имеет использование так называемых электронных пучков.

Определение. Электронный пучок – поток электронов, длина которого много больше его ширины. Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка) (рис. 3).

Рис. 3. Электронная пушка

Электронные пучки обладают рядом ключевых свойств:

В результате наличия большой кинетической энергии они имеют тепловое воздействие на материал, в который врезаются. Данное свойство применяется в электронной сварке. Электронная сварка необходима в тех случаях, когда важно сохранение чистоты материалов, например, при сваривании полупроводников.

При столкновении с металлами электронные пучки, замедляясь, излучают рентгеновское излучение, применяемое в медицине и технике (рис. 4).

Рис. 4. Снимок, сделанный при помощи рентгеновского излучения ()

При попадании электронного пучка на некоторые вещества, называющиеся люминофорами, происходит свечение, что позволяет создавать экраны, помогающие следить за перемещением пучка, конечно же, невидимого невооруженным глазом.

Возможность управлять движением пучков с помощью электрических и магнитных полей.

Следует отметить, что температура, при которой можно добиться термоэлектронной эмиссии, не может превышать той температуры, при которой идет разрушение структуры металла.

На первых порах Эдисон использовал следующую конструкцию для получения тока в вакууме. В вакуумную трубку с одной стороны помещался проводник, включенный в цепь, а с другой стороны – положительно заряженный электрод (см. рис. 5):

В результате прохождения тока по проводнику он начинает нагреваться, эмиссируя электроны, которые притягиваются к положительному электроду. В конце концов, возникает направленное движение электронов, что, собственно, и является электрическим током. Однако количество таким образом испускаемых электронов слишком мало, что дает слишком малый ток для какого-либо использования. С этой проблемой можно справиться добавлением еще одного электрода. Такой электрод отрицательного потенциала называется электродом косвенного накаливания. С его использованием количество движущихся электронов в разы увеличивается (рис. 6).

Рис. 6. Использование электрода косвенного накаливания

Стоит отметить, что проводимость тока в вакууме такая же, как и у металлов – электронная. Хотя механизм появления этих свободных электронов совсем иной.

На основе явления термоэлектронной эмиссии был создан прибор под названием вакуумный диод (рис. 7).

Рис. 7. Обозначение вакуумного диода на электрической схеме

Рассмотрим подробнее вакуумный диод. Существует две разновидности диодов: диод с нитью накаливания и анодом и диод с нитью накаливания, анодом и катодом. Первый называется диодом прямого накала, второй – косвенного накала. В технике применяется как первый, так и второй тип, однако диод прямого накала имеет такой недостаток, что при нагревании сопротивлении нити меняется, что влечет за собой изменение тока через диод. А так как для некоторых операций с использованием диодов необходим совершенно неизменный ток, то целесообразнее использовать второй тип диодов.

В обоих случаях температура нити накаливания для эффективной эмиссии должна равняться .

Диоды используются для выпрямления переменных токов. Если диод используется для преобразования токов промышленного значения, то он называется кенотроном.

Электрод, расположенный вблизи испускающего электроны элемента, называется катодом (), другой – анодом (). При правильном подключении при увеличении напряжения растет сила тока. При обратном же подключении ток идти не будет вообще (рис. 8). Этим вакуумные диоды выгодно отличаются от полупроводниковых, в которых при обратном включении ток хоть и минимальный, но есть. Благодаря этому свойству вакуумные диоды используются для выпрямления переменных токов.

Рис. 8. Вольтамперная характеристика вакуумного диода

Другим прибором, созданным на основе процессов протекания тока в вакууме, является электрический триод (рис. 9). Его конструкция отличается от диодной наличием третьего электрода, называемого сеткой. На принципах тока в вакууме основан также такой прибор, как электронно-лучевая трубка, составляющий основную часть таких приборов, как осциллограф и ламповые телевизоры.

Рис. 9. Схема вакуумного триода

Как уже было сказано выше, на основе свойств распространения тока в вакууме было сконструировано такое важное устройство, как электронно-лучевая трубка. В основе своей работы она использует свойства электронных пучков. Рассмотрим строение этого прибора. Электронно-лучевая трубка состоит из вакуумной колбы, имеющей расширение, электронной пушки, двух катодов и двух взаимно перпендикулярных пар электродов (рис. 10).

Рис. 10. Строение электронно-лучевой трубки

Принцип работы следующий: вылетевшие вследствие термоэлектронной эмиссии из пушки электроны разгоняются благодаря положительному потенциалу на анодах. Затем, подавая желаемое напряжение на пары управляющих электродов, мы можем отклонять электронный пучок, как нам хочется, по горизонтали и по вертикали. После чего направленный пучок падает на люминофорный экран, что позволяет нам видеть на нем изображение траектории пучка.

Электронно-лучевая трубка используется в приборе под названием осциллограф (рис. 11), предназначенном для исследования электрических сигналов, и в кинескопических телевизорах за тем лишь исключением, что там электронные пучки управляются магнитными полями.

На следующем уроке мы разберем прохождение электрического тока в жидкостях.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. – М.: 2010.
  1. Physics.kgsu.ru ().
  2. Cathedral.narod.ru ().
  3. Энциклопедия Физики и Техники ().

Домашнее задание

  1. Что такое электронная эмиссия?
  2. Какие есть способы управления электронными пучками?
  3. Как зависит проводимость полупроводника от температуры?
  4. Для чего используется электрод косвенного накала?
  5. *В чем основное свойство вакуумного диода? Чем оно обусловлено?

Электрический ток - упорядоченное движение электрозарядов. Его можно получить, например, в проводнике, который соединяет заряженное и незаряженное тело. Однако этот ток прекратится, как только разность потенциалов этих тел станет нулевой. Упорядоченное ток) будет существовать также в проводнике, соединяющем пластины заряженного конденсатора. В этом случае ток сопровождается нейтрализацией зарядов, находящихся на пластинах конденсатора, и продолжается, пока разность потенциалов пластин конденсатора не станет нулевой.

Эти примеры показывают, что электрический ток в проводнике возникает лишь при наличии на концах проводника разных потенциалов, т. е. тогда, когда в нем есть электрическое поле.

Но в рассмотренных примерах ток не может быть длительным, так как в процессе перемещения зарядов потенциалы тел быстро выравниваются и электрическое поле в проводнике исчезает.

Следовательно, для получения тока необходимо поддерживать на концах проводника разные потенциалы. Для этого можно переносить заряды с одного тела на другое обратно по другому проводнику, образуя для этого замкнутую цепь. Однако под действием сил этого же электрического поля такой перенос зарядов невозможен, так как потенциал второго тела меньше потенциала первого. Поэтому перенос возможен только силами неэлектрического происхождения. Наличие таких сил обеспечивает источник тока, включаемый в цепь.

Силы, действующие в источнике тока, переносят заряд от тела с меньшим потенциалом к телу с большим потенциалом и совершают при этом работу. Следовательно, должен обладать энергией.

Источниками тока являются гальванические элементы, аккумуляторы, генераторы и т. д.

Итак, основные условия возникновения электрического тока: наличие источника тока и замкнутой цепи.

Прохождение тока в цепи сопровождается рядом легконаблюдаемых явлений. Так, например, в некоторых жидкостях при прохождении по ним тока наблюдается выделение вещества на электродах, опущенных в жидкость. Ток в газах часто сопровождается свечением газов и т. д. Электрический ток в газах и вакууме изучал выдающийся французский физик и математик - Андре Мари Ампер, благодаря которому мы теперь знаем природу таких явлений.

Как известно, вакуум - наилучший изолятор, т. е. пространство, из которого выкачан воздух.

Но можно получить электрический ток в вакууме, для чего необходимо внести в него носители зарядов.

Возьмем сосуд, из которого откачан воздух. В этот сосуд впаяны две металлические пластины - два электрода. Один из них A (анод) соединим с положительным источником тока, другой K (катода) - с отрицательным. Напряжение между достаточно приложить 80 - 100 В.

Включим в цепь чувствительный миллиамперметр. Прибор не показывает никакого тока; это указывает на то, что электрический ток в вакууме не существует.

Видоизменим опыт. В качестве катода впаяем в сосуд проволочку - нить, с выведенными наружу концами. Эта нить по-прежнему останется катодом. С помощью другого источника тока накалим ее. Мы заметим, что, как только нить накаляется, прибор, включенный в цепь, показывает электрический ток в вакууме, и тем больший, чем сильнее накалена нить. Значит, нить при нагревании обеспечивает наличие в вакууме заряженных частиц, она является их источником.

Как заряжены эти частицы? Ответ на этот вопрос может дать опыт. Переменим полюсы у впаянных в сосуд электродов - нить сделаем анодом, а противоположный полюс - катодом. И хотя нить накалена и посылает заряженные частицы в вакуум, тока нет.

Из этого следует, что эти частицы заряжены отрицательно, потому что они отталкиваются от электрода А, когда он заряжен отрицательно.

Что представляют собой эти частицы?

Согласно электронной теории, свободные электроны в металле находятся в хаотическом движении. При накале нити это движение усиливается. При этом некоторые электроны, приобретая энергию, которой достаточно для совершения выхода, вылетают из нити, образуя около нее «электронное облачко». Когда между нитью и анодом образуется электрическое поле, то электроны летят к электроду А, если он присоединен к положительному полюсу батареи, и отталкиваются обратно к нити, если он присоединен к отрицательному полюсу, т. е. имеет заряд, одноименный с электронами.

Итак, электрический ток в вакууме - это направленный поток электронов.